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Abstract

Effective coordination and synchronization between processes remains
a challenge that becomes even more important with the rise of multi-
core hardware.
This thesis introduces Octopus, a coordination service for the Barrelfish
operating system. Octopus addresses the problem of coordination be-
tween concurrent processes or activities in Barrelfish. The Octopus de-
sign is influenced by ideas from distributed computing. We show that
these ideas are transferrable to operating systems. We used a declar-
ative, logic programming engine to implement parts of the Octopus
service and evaluate the benefits and drawbacks of this approach.
In a case study, we used Octopus to write a service that is responsible
for device management and bootstrapping the OS as well as a replace-
ment for the Barrelfish name server. Our experience with Octopus has
shown that it simplifies programming services that require complex co-
ordination patterns by a great deal, while at the same time offering a
flexible API for a programmer to solve a wide range of coordination
and synchronization problems.
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Chapter 1

Introduction

1.1 Problem Statement

In 2009, Baumann et. al. argued that modern hardware starts to look more
and more like a distributed system [4]: Machines tend to become hetero-
geneous as attached devices become more intelligent and programmable,
leading to a number of hardware instruction sets being used within a sin-
gle machine. Hot-plug support and hardware failures lead to a dynamic
system where devices, bus controllers or even cores can appear and disap-
pear at will. Non-Uniform Memory Architectures (NUMA) are already the
norm today and exhibit varying latency for accessing different caches in the
machine, much like network latencies in distributed systems. Traditional
operating system mostly ignore this trend because they rely on cache coher-
ence protocols and assume uniform CPU and memory architectures. These
observations led to the development of the Barrelfish multikernel architec-
ture [3]. Barrelfish embraces ideas from distributed computing and applies
them inside the operating system. The result is a more distributed system
architecture, aiming to be a better fit for the hardware of the future.

1.2 Context

Coordination between concurrent processes or activities has always been
a problem, with the advent of more complex, diverse, and heterogeneous
hardware and more fully-featured OS designs, even the efficient bootstrap-
ping of an OS involves complex synchronization and coordination patterns
between a large number of inter-dependent tasks. In order to deal with these
challenges, we introduce Octopus, a new coordination service for Barrelfish.
Octopus combines ideas and insights from distributed computing and is in-
tegrated into the existing structures of Barrelfish. Further, we show how we
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1. Introduction

used Octopus to write a device manager capable of reacting to changes —
due to failures in hardware or hot plugging of devices of any sort — and
take appropriate measures.

1.3 Overview

In the next chapter we give some background about Barrelfish, the technol-
ogy we use and introduce topics referred to throughout this thesis. Chap-
ter 3 explains the design decisions we made and the interfaces used for
Octopus. Chapter 4 goes into more details about the implementation of
Octopus, and we explain how we integrated the service within Barrelfish
and what the advantages and drawbacks of the underlying technology are.
Chapter 5 evaluates and discusses the measured performance of the service.
Chapter 6 explains how we used the service in Barrelfish to simplify the boot
process and device management of the OS. Chapter 7 examines various ex-
isting systems that deal with coordination, storage and events in the area of
distributed systems and operating systems. Finally, in Chapter 8, we draw
conclusions about our work, discuss current limitations and give ideas for
future improvements.
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Chapter 2

Background

2.1 Barrelfish

Barrelfish is a research operating system being developed collaboratively
by researchers from ETH Zürich and Microsoft Research. The system is in-
tended to explore ideas about the structure of operating systems for future
hardware. Barrelfish is structured as a multikernel architecture [3], in antic-
ipation that the main challenges for operating systems will be scalability as
the number of cores increases and in dealing with processor and system het-
erogeneity. Barrelfish tries to adapt ideas from distributed systems to meet
the challenges of future multi-core hardware.

2.1.1 CPU Driver

The CPU driver is a process running in privileged mode on every core.
Among other responsibilities, a CPU driver handles scheduling, memory
allocation tables, low-level resource allocation, protection enforcement and
authorization. It is written specifically for the CPU architecture it runs on.
This allows the rest of the OS to be written in a hardware-neutral way.

2.1.2 Monitor

Aside from the CPU driver, every core runs a monitor as a user-space pro-
cess. The monitor acts as a coordinator between cores: It communicates with
other monitors to exchange information and is also responsible for setting
up inter-dispatcher communication channels. Because it is a distinct possi-
bility that non-coherent memory will become the norm as the number of
cores increases, monitors replicate state among one another using message
passing as opposed to sharing state by exploiting the coherent memory of
todays hardware architectures.
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2. Background

2.1.3 Inter Dispatcher Communication & Flounder

In Barrelfish, a dispatcher is a unit of kernel scheduling and is responsi-
ble for the management of the kernel’s threads. Communication between
different dispatchers (so called Inter Dispatcher Communication or IDC) is
performed over bidirectional communication channels. A channel is defined
by Flounder, an interface definition language. A Flounder interface is used
to describe the messages exchanged over a channel. At compile time the
interface is translated into C code, which allows applications to use stubs to
send messages. A server can export an interface by sending a message to the
monitor. The monitor then assigns a unique interface reference (iref) to the
interface. Clients can use this iref to identify the service and initiate a con-
nection. Barrelfish has a name service called Chips. Chips is used to store
and look-up irefs based on a name chosen by the server. There are a number
of back-ends for message passing in Barrelfish. The one chosen at runtime
depends on the underlying hardware and the location of the sender and re-
ceiver. For example, on x86 hardware there are two implementations: local
message passing (LMP) using hardware registers and user message passing
(UMP) using shared memory. Whereas LMP is used for IDC between two
dispatchers on the same core, IDC between different cores uses UMP. Which
mechanism is used is determined during connection set-up.

2.1.4 Capabilities

In order to keep track of global resources, Barrelfish uses capabilities [14] to
manage ownership and type of a resource. An area in Barrelfish that uses
capabilities is the memory system: In case a program needs access to RAM
it can request a capability for a given region of memory. The capability is
then used for all calls to the kernel to invoke operations on that memory
region. In contrast to access control lists (ACL) it is possible to provide
fine-grained access to a specific set of resources for individual user-space
programs. User-space programs do not have direct access to capabilities but
instead use capability references. This allows them to pass these references
around and delegate permissions to others.

2.1.5 THC

THC [11] is a set of language constructs for composable asynchronous I/O.
THC is integrated in the message passing system in Barrelfish. THC’s benefit
is that it avoids "stack-ripped" code: Regular Flounder bindings require to
specify callbacks to handle incoming messages. Plus, sending a message
can fail if the communication channel is currently busy. This usually forces
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2.2. SKB

a programmer to write chains of callbacks, therefore making the code hard
to read and hard to maintain.

2.2 SKB

The System Knowledge Base (SKB) runs as a service in Barrelfish. The SKB
is used to store and retrieve information about the underlying hardware,
gathered from various locations such as ACPI tables and the PCI configu-
ration space. In addition, a programmer can populate the SKB with static
information like topology of system boards or corrections for known errors
in ACPI tables. The SKB uses the ECLiPSe CLP engine to store, retrieve
and process those informations. Schüpbach et. al. [20] used the SKB to sepa-
rate hardware configuration logic from programming device registers. They
show that the former is expressed easier in ECLiPSe CLP, using a high-level,
declarative language, while they still use C for the low-level interaction with
device registers.

2.2.1 Constraint Logic Programming

ECLiPSe CLP [1] is a constraint logic programming software system. It is
intended for general programming tasks, especially rapid prototyping. The
ECLiPSe language is largely backward-compatible with Prolog. However, a
number of extensions have been made, including a string data type, arith-
metics with unlimited precision, double precision floating points and logi-
cal iteration. ECLiPSe comes with a rich set of libraries such as constraint
solvers for problem solving and non-logical data stores. The system has a
tight interface to C: A programmer can call C code from within ECLiPSe

code by using external C predicates. The engine provides APIs to convert
data from C to ECLiPSe types and vice-versa.

Memory Management & Garbage Collector

During the execution of a query, Prolog structures, such as numbers, strings
and lists are stored on the global stack. The global stack grows as the pro-
gram runs and is popped only on failure of a query. ECLiPSe provides a
garbage collector to clean-up the stack during long running queries. The
GC is invoked based on a watermark: Once a certain amount of new space
is consumed, the garbage collector will run and remove no longer needed
items from the stack. A trail stack stores information needed for backtrack-
ing. In case a rule fails, the engine needs to know where to continue with
the execution. This stack is garbage collected together with the global stack.
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2. Background

An atom is a data type in ECLiPSe. Atoms are used to represent the names of
functors. They are stored in a dictionary (similar to a hierarchical page table).
New atoms are added to the directory whenever the system encounters an
atom that has not been mentioned so far. The dictionary is garbage collected
after a certain number of new entries have been added to get rid of atoms
no longer used.

The heap is where ECLiPSe keeps all the compiled Prolog code as well as
static and dynamic predicates. Heap space is also used by non-logical stor-
age facilities — that store information across backtracking — and external C
predicates. A programmer writing an external predicate can access the heap
using APIs provided by the operating system and libc (malloc or the like).

Prolog

Prolog [17] is a logic programming language based on first-order logic. It
has only one data type called term. Terms are any one of atoms, numbers,
variables or compound terms:

Atom A name. Must start with a lowercase letter.

Number Floating point or Integer value.

Variable Placeholder for an arbitrary term, always starts with an upper case
letter.

Compound term Composition of an atom with a number of arguments that
are terms as well.

Prolog is a declarative language. Program logic is expressed in terms of re-
lations. There are only three basic constructs called facts, rules and queries.

Facts express something that is always true. As an example, consider these
facts expressed in natural language: "Alfred lives in New York." or "New
York is a state of the US.". In Prolog we can express facts as terms:

% Facts written as compound terms with 2 arguments:
lives(alfred, new_york).
state(new_york, usa).

Rules are expressed in Horn clauses. They are used to describe relations
between terms. As an example, consider the following sentence in natural
language: "If X lives in Y and Y is a state of the US, X is a US resident.".
Translated in Prolog, the sentence takes the following form:
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2.3. Advanced Configuration and Power Interface

is_us_resident(X) :- lives(X, Y), state(Y, usa).

The left side (is_us_resident(X)) is true in case the right side evaluates to
true. X and Y are variables Prolog can unify to any term at runtime. The
comma serves as a conjunction operator for terms.

Queries are used to initiate computations in Prolog. Computations make
use of the relations we have defined beforehand:

?- is_us_resident(alfred).
Yes.

?- is_us_resident(mary).
No.

?- is_us_resident(R).
R = alfred.

Prolog uses backtracking and logical unification to find a solution for a
query: In our first computation, the system reasons that Alfred lives in
New York (fact) and New York is a state of the US (fact), therefore Alfred
must be a US resident. For the second query Prolog will find no information
about the living situation of Mary, therefore the query will fail. A variable
is used in case we are interested in a solution, but do not know the names
of possible residents beforehand.

2.3 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) specification [12]
is an open standard for device configuration and power management in op-
erating systems. It builds on previous power management BIOS code such
as Advanced Power Management (APM), PNPBIOS APIs and Multiproces-
sor Specification (MPS) tables. ACPI aims at providing an API to ensure that
power management code in operating systems can evolve independently
from the underlying hardware. It is also used to find out more about the
installed hardware of a system as the ACPI tables contain information about
APICs and installed PCI root bridges.
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2.4 Advanced Programmable Interrupt Controller

Advanced Programmable Interrupt Controller (ACPI) [6] is a device used to
set up, enable, disable and route interrupts in a machine. It is designed to
handle a large number of hardware interrupts in a scalable way: Each CPU
has an APIC built in, referred to as local APIC. I/O APICs are used to detect
interrupts of hardware devices. The operating system needs to configure the
I/O APICs and tell them to which local APIC a device interrupt should be
forwarded. The operating system can use local APICs to generate inter-
processor interrupts (IPI) to implement efficient message passing between
cores.

2.5 Peripheral Component Interconnect

Peripheral Component Interconnect (PCI) [20] commonly refers to a com-
puter bus for attaching devices to a computer. Intel published the original
PCI standard known as conventional PCI in 1993. Initially, PCI had 32-bit
bus operating at 33 MHz resulting in a total bandwidth of 133 MB/s for data
transfer. Increasing requirements for bandwidth, due to faster peripherals,
led to a new standard created by HP, Compaq and IBM known as PCI-X. Us-
ing a 64-bit wide bus running at 133 MHz, PCI-X had a peak performance of
1 064 MB/s. PCI Express or PCIe is the latest development in PCI standards
and supersedes PCI and PCI-X. It has a number of improvements includ-
ing higher bandwidth (up to 16 GB/s), better error detection, and native
hot-plug functionality. The operating system can find out about installed
cards and their function by reading out the PCI configuration space. The OS
is also responsible for programming the PCI Base Address Registers (BAR)
in the configuration space in order to set up correct memory mappings for
device drivers.
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Chapter 3

Approach

This chapter explains the general architecture and design decisions that led
to the implementation of Octopus, the Barrelfish coordination service. The
service aims at providing a set of APIs, which have been around for a long
time in distributed systems: A searchable key–value store for structured
data that allows to build synchronization primitives and a publish–subscribe
mechanism for decoupled messaging.

3.1 General Service Architecture

The Octopus coordination service is built as a client–server architecture. In
Chapter 7, we give an overview of similar services in distributed computing,
structured in a peer-to-peer like fashion. At the current scale Barrelfish is
operating, this architecture did not seem appropriate considering the effort,
but might be worth to explore at a later point in time. We used the SKB and
its constraint logic programming engine ECLiPSe as a server to be able to
exploit the logical unification capabilities and expressiveness of the Prolog
language for our implementation.

In order to keep the dependencies with the SKB minimal, we put most of
the code in libraries. Only the code that directly interfaces with the ECLiPSe

CLP engine had to be added to the SKB. This should make it easier to use
another engine or database in the future.

liboctopus Contains the APIs used by clients to interface with the Octopus
service.

liboctopus_server Server-side message handlers & connection set-up.

liboctopus_parser Parser for the query language (see Section 3.2).

9



3. Approach

Please note that this section is necessarily implementation-oriented in order
to provide a basis for describing the interface. For a more detailed discussion
of the architecture, please refer to Section 4.1 in the next chapter.

3.2 Query Language

Currently, Barrelfish uses a straight-forward approach to interface with the
SKB: Strings, written in Prolog syntax, are sent directly to the SKB, which
forwards it to ECLiPSe. ECLiPSe then parses the string and executes it as a
query. This approach provides a lot of flexibility for the clients but has some
disadvantages:

• A client needs knowledge about the underlying Prolog code in order
to write correct queries.

• Executing queries unchecked on the ECLiPSe CLP engine makes it
hard to have a reliable service as it is easy to write queries that affect
or corrupt the state of the stored data or the engine itself.

• Queries for the SKB have to follow the rules dictated by the ECLiPSe

Prolog syntax (uppercase variable names, strings in double quotes,
atoms must start with a lowercase letter etc.).

As it is desirable to have a service that is not tied too strong with ECLiPSe,
we decided to come up with a designated syntax that could be used through-
out all the different APIs our service should provide.

3.2.1 Record Notation

In this section we introduce the notion of a Octopus record: A set of attribute–
value pairs identified by a record name. As an introduction, we give some
examples of records stored in Barrelfish:

spawnd.1 { iref: 12 }
hw.pci.device.1 { bus: 0, device: 1, function: 0,

vendor: 0x8086, device_id: 0x107d,
class: ’C’ }

The first line is a record created by the name service client API. It contains
the interface reference for the exported service named spawnd.1. The second
line is a record for a e1000 network card found during PCI bus enumeration.
The syntax is mostly inspired by JSON (JavaScript Object Notation) [27] — a
data-interchange format that is easy to read and write for humans and easy
to parse and generate for machines. Table 3.1 gives a description of a record
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3.2. Query Language

in EBNF. We allow records to contain basic data types: strings, integers and
floating points. In comparison with JSON we do not support nested records
or lists. These extensions could be added in the future, if the need arises.

The current design is based on some observations we made for Barrelfish:

• Barrelfish is mostly written in C. Support for C value types and structs
is needed for interoperability with Barrelfish.

• The SKB contains a lot of information read out from PCI BARs and
ACPI tables. Currently the SKB stores this information by combining
related register or table values using dynamic predicates. It makes
sense to store some of this information as records, so clients can react
to changes concerning this information (see also Section 3.3.1).

• We try to exploit the advantages of Prolog as a dynamic language by
parsing the records (records are represented as strings in C) at runtime
and translating them into Prolog code.

A Octopus record is the unit that gets stored in the key–value storage and
the message exchanged in the publish–subscribe system.

record ::= name ["{" {attributes} "}"]
name ::= ident
attributes ::= attribute | attribute "," attributes
attribute ::= ident ":" value
value ::= ident | string | number | float
ident ::= lower-case-alphabetic-character {alphabetic-character |

digit | "_" | "."}
string ::= "’" {string-character} "’"
string-character ::= any-character-except-quote | "\′"
number ::= [−] digit {digit}
float ::= [−] {digit} "." digit {digit}

Table 3.1: Extended Backus–Naur Form for a Octopus
record.

3.2.2 Record Queries

For queries sent to the server, to store, retrieve and delete records or to
store subscriptions, we extended the current record notation to support con-
straints and variables (see Table 3.2). Constraints and variables allow us to
give a more general description of a set of records we are interested in. In
addition, they are expressed easily in Prolog code with the logical unifica-
tion and backtracking features of the language. As an example, consider the
following record queries:

11
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r’spawnd\.[0-9]+’ { iref: _ }
_ { bus: 0, bus == 0, device <= 1, vendor > 100,

class: r’C|X|T’ }

The first query looks for a record whose name starts with "spawnd." and
ends with a number. In order to do effective matchings for strings in at-
tributes and also record names, we allow constraints to be formulated as
regular expressions [29]. The underscore after iref means that our record
should contain this particular attribute, but we do not care about its value.
The second query corresponds to any record — the underscore keeps its
meaning here — matching the specified constraints. You may have noted
that the combination of bus: 0 and bus == 0 seems redundant when used
in the same query. As we explain later when we look at the storage API
in more detail, for get and del queries there is no difference between them.
However, for set queries, the former acts as an update instruction, whereas
the latter forms a constraint that the record we are updating has to satisfy
for a successful update. This example also shows that it is possible to have
multiple constraints with the same attribute name in a single query. In this
case, we combine the constraints using a logical AND operator. The idea is
to give the clients the ability to formulate their interest in specific records
as a template. In case the need arises in the future, it is possible to extend
the notation to express more complex relations (for example by using a OR
operator).

record ::= name ["{" {attributes} "}"]
name ::= ident | variable | regex
attributes ::= attribute | attribute "," attributes
attribute ::= ident ":" value | ident constraint
value ::= ident | string | number | float
constraint ::= operator value | ":" regex | ":" variable
operator ::= "<" | "<=" | ">" | ">=" | "==" | "!="
variable ::= "_"
regex ::= "r’" {string-character} "’"
ident ::= lower-case-alphabetic-character {alphabetic-character |

digit | "_" | "."}
string ::= "’" {string-character} "’"
string-character ::= any-character-except-quote | "\′"
number ::= [−] digit {digit}
float ::= [−] {digit} "." digit {digit}

Table 3.2: Extended Backus–Naur Form for a Octopus
query.
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3.3. Key–Value Storage

3.3 Key–Value Storage

The idea of the key–value store is to be used for applications to share small
amounts of configuration or meta-data. In addition it should be flexible
enough to allow clients to build synchronization primitives such as barriers
and locks on top of the provided API. These primitives can then be used to
solve a wide range of problems that appear when dealing with distributed
processes, including but not limited to leader election and group manage-
ment, rendezvous points, configuration management and shared data stor-
age.

3.3.1 Trigger

A trigger is an optional argument passed to the server while using the stor-
age API (see Section 3.3.2 for the API description). A trigger will register
itself in the system and notify the client asynchronously or synchronously
in the future, in case a record that matches the query has been modified or
added using set, or deleted with a del call. A client can install a trigger to
react to changes caused by others. Trigger form the basis for writing efficient
synchronization primitives (see Chapter 4.6). They work similar to watches
in Zookeeper [13] but have some differences that make them more flexible:

• Triggers can be made persistent: In that case the server leaves them
intact after they have fired once.

• Clients can specify exactly if a trigger should be installed in the system
based on the returned error code of the query invocation.

We found these features useful as they make the life for the programmer eas-
ier and require less code: In case triggers are only one-time events, clients
have to re-register a trigger every time it has fired if they are still interested
in forthcoming changes. This situation is bad as resetting the trigger in-
volves an additional call to the server. Furthermore, the result of the call
must be considered as well because we might have missed a change dur-
ing the time between the arrival of our initial trigger event and setting-up
the next trigger. Setting the trigger based on the result of the API call also
reduces the code on the client side. Lets assume a very common use case
where a client wants to wait until a record exists in the system. He does an
exist call on the record and specifies to set the trigger only if the record
does not exist at the time the query is evaluated on the server. In case the
exist call finds the record and returns successful, the client does not have to
worry about incoming events for this particular trigger because the trigger
was never installed.
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liboctopus allows to create and define the behavior of a trigger by invoking
a library function:

/**
* \param in_case A trigger is only installed in case the
* resulting error value of the query invocation
* matches this argument
* \param send_to Specify over which binding to
* send back a trigger event
* \param mode A bitmask to set various options for a trigger
* \param fn The handler function liboctopus will call in case
* it receives a trigger message.
* \param state Optional state argument, passed along
* to the handler function.
*/

struct trigger oct_mktrigger(errval_t in_case,
enum oct_binding_type send_to, oct_mode_t mode,
trigger_handler_fn fn, void* state)

A client can program the trigger so that the server sends trigger messages
back to the client over the event binding or the THC binding (see Section 4.1).
The THC binding allows to wait for a trigger messages synchronously. This
makes it easier to build blocking synchronization algorithms, as we do not
need to coordinate with the event binding in that case (see Section 4.6). The
mode argument is a bitmask that allows to specify if the trigger is checked
on set or del calls or both. Another bit in mode is used in case we want
to ignore the in_case argument and install the trigger in any case. Further,
mode also encodes if the trigger is persistent. Note that a persistent trigger
should always be programmed to use the event binding. This is merely to
avoid running into complex situations where the THC binding receives a
trigger message while waiting for a RPC response.

3.3.2 Storage API

In this section, we give an overview of the implemented interface for the
storage system and explain the semantics of each function. The API we
present here are message primitives from the Flounder interface, the lowest
level of abstraction for clients. The liboctopus API builds on top of this
Flounder interface and avoids a lot of the hassle when dealing with strings
in C.

/**
* \param query Octopus query.
* \param t Trigger for the provided query (optional).
* \param names Names of all records that match the query
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* (comma separated).
* \param tid ID of the installed trigger.
* \param error_code Returned error of the query invocation.
*/

rpc get_names(in string query, in trigger t, out string names,
out trigger_id tid, out errval error_code);

A client issues a get_names call in case he wants to find all the records that
match the provided query. The resulting names are returned in a comma-
separated string. This call is a compromise that had to be made because
of the limitations with the ECLiPSe engine: We experimented with saving
Prolog choice points and build something similar to iterators on top of that.
However, we observed that ECLiPSe starts to fail in case a lot of queries
leave choice points open to continue the execution at a later point in time.
For this call, attribute–value pairs are translated into constraints using the
== operator.

/**
* \param query Octopus query.
* \param t Trigger for the provided query (optional).
* \param record First record found matching the query.
* \param tid ID of the installed trigger.
* \param error_code Returned error of the query invocation.
*/

rpc get(in string query, in trigger t, out string record,
out trigger_id tid, out errval error_code);

The get call returns the first record encountered in the database that matches
the provided query or returns an appropriate error code in case the system
did not find a matching record. For this call, attribute–value pairs are trans-
lated into constraints using the == operator.

/**
* \param query Octopus query.
* \param mode A bitmask used to define how a record is set.
* \param t Trigger for the provided query (optional).
* \param get Specify if we want to receive the record we have set.
* \param record In case get is true, contains
* the record that was stored in the system.
* \param tid ID of the installed trigger.
* \param error_code Returned error of the query invocation.
*/

rpc set(in string query, in mode m, in trigger t, in bool get,
out string record, out trigger_id tid,
out errval error_code);
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A set call is used to store a record in the system or update an existing record.
The mode argument is currently used to tell the server to add a sequentially
increasing number at the end of the record name. This lets us create unique
names for records. In set queries, constraints are used to select the record
we want to update, whereas attribute–value pairs specify which attributes
we want to add or update and to what values. The benefit is that clients
can avoid the lost update problem: If multiple clients update a single record
simultaneously, they can add constraints based on their current local version
of the record. As an example consider the following query:

dataRecord { data: 12, version: 22, version == 21 }

In case the constraint will not match (version is not 21) the update for
dataRecord (set data to 12 and version to 22) fails. In addition, we do not
allow the record name to be formulated as a constraint (a regular expression
or a variable): Right now, we do not have any access control or protection
mechanisms for records. This means that in case a client issues a set call
with a unspecified record name, he can never be sure how many and which
records are affected by the query (even if he tries to verify it by doing a
get_names call beforehand, it could still happen that records are added or
updated in between).

/**
* \param query Octopus query.
* \param t Trigger for the provided query (optional).
* \param tid ID of the installed trigger.
* \param error_code Returned error of the query invocation.
*/

rpc del(in string query, in trigger t, out trigger_id tid,
out errval error_code);

Deletes a record matching the query from the system. As with set calls, we
do not allow the record name to be a constraint for the same reason. For
this call, attribute–value pairs are translated into constraints using the ==
operator.

/**
* \param query Octopus query.
* \param t Trigger for the provided query (optional).
* \param tid ID of the installed trigger.
* \param error_code Returned error of the query invocation.
*/

rpc exists(in string query, in trigger t, out trigger_id tid,
out errval error_code);
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This call is similar to the get call, but we only return the resulting error code
and not the record itself.

/**
* \param tid Trigger ID to remove
* \param error_code Returned error of RPC invocation.
*/

rpc remove_trigger(in trigger_id tid, out errval error_code);

A programmer can use remove_trigger to remove a previously installed
trigger. For non-persistent trigger it is not necessary to call this function as
they are removed automatically after they have fired for the first time. Also
note that the server only removes a trigger in case the same binding that
initially installed the trigger requests it.

/**
* \param id ID of the trigger this event corresponds to.
* \param trigger_fn Function pointer to a handler function
* (supplied by the client).
* \param mode m Bitmask informing the client of the event
* type.
* \param record The record that matched with the trigger.
* \param state State argument (supplied by the client).
*/

message trigger(trigger_id tid, handler_fn trigger, mode m,
string record, uint64 state);

This is a asynchronous message, sent to a client, for a trigger event. The
client receives this in case one of the triggers he added previously matched
with a record during set or del calls. liboctopus handles these messages
and uses the trigger_fn argument to call a handler function (supplied by
the client on trigger creation). The mode argument informs about the event
that caused the trigger to fire (i.e., was it during a set or del call?). In
addition, in case a trigger has been removed, a bit in the mode argument is
set that informs the client about it. The programmer can use this to decide
if it is safe to free any state associated with the trigger. Note that for per-
sistent triggers, an extra trigger message, with only the removed bit set in
mode, is sent, in case we issue a remove_trigger request. This is necessary
because triggers are usually sent over the event binding (see Section 4.1): If
we remove a persistent trigger, the client might still get messages concerning
the removed trigger afterwards. This happens in case the remove_trigger
request is handled on the server before all messages for the event binding
have been processed on the client.
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3.4 Publish–Subscribe

The publish–subscribe API is used to decouple messaging among clients.
Records are published and subscribers use record queries to subscribe to a
particular set of records they are interested in. Our publish–subscribe mech-
anism is best characterized as a topic and content based hybrid: Regular
expression constraints on record names allow us to select specific message
names and constraints on values allow us to filter for messages based on the
content. The API is similar to existing publish–subscribe systems featuring
the three functions publish, subscribe and unsubscribe:

/**
* \param record Message to publish.
* \param error_code Returned error of RPC invocation.
*/

rpc publish(in string record, out errval error_code);

Publishes an Octopus record to subscribers.

/**
* \param query Octopus query.
* \param handler_fn Address of client handler function.
* \param state Additional state argument.
* \param id Subscription ID.
* \param error_code Returned error of RPC invocation.
*/

rpc subscribe(in string query, in handler_fn handler,
in uint64 state, out subscription_id id,
out errval error_code);

Adds a subscription described through a Octopus record query. The client
can pass along a handler function and state argument. They are sent back
to the client with a matching, published record. For subscriptions, attribute–
value pairs are translated into constraints using the == operator.

/**
* \param id ID of subscription that is to be removed.
* \param error_code Returned error of RPC invocation.
*/

rpc unsubscribe(in subscription_id id, out errval error_code);

Removes a subscription on the server, identified by the id parameter. The
server only removes the subscription in case the same binding that initially
installed the subscription requests it.

/**
* \param id ID of the subscription this event corresponds to.
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* \param trigger_fn Function pointer to a handler function
* (supplied by the client on subscribe).
* \param mode m Bitmask informing the client of the event
* type.
* \param record The record that matched with the subscription.
* \param state State argument (supplied by the client on

subscribe).
*/

message subscription(subscription_id id, handler_fn handler, mode m,
string record, uint64 state);

Published messages are delivered asynchronously to clients with a matching
subscription by sending this message. liboctopus handles incoming mes-
sages and calls the handler function with the appropriate arguments. Note
that this message format is identical to the trigger message. liboctopus also
uses the same handler function type for both. It allows a programmer to use
the same event handler for publish and trigger events. A bit in the mode ar-
gument indicates that this event results from a published message. As with
triggers, a unsubscribe call results in an additional subscription message
with a bit set in mode that indicates the removal of the subscription.

You should note the analogy between subscribe and triggers. In terms of im-
plementation they are indeed identical (see Section 4.5), the only difference
is that triggers will be matched against records, stored using the storage API,
whereas subscriptions will be matched against published records.
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Chapter 4

Implementation

This chapter gives an overview of how we implemented the Octopus service
in Barrelfish. We also show how we used the Octopus API, described in
Chapter 3, to build distributed locks, barriers and semaphores.

4.1 Octopus Architecture

Figure 4.1 gives an overview of our architecture. As we already mentioned
briefly in Section 3.1, our server is built on top of the SKB. To translate
records and queries into Prolog from the language we introduced in Sec-
tion 3.2, we needed a lexer and parser. We built the lexer and parser using
Flex [25] and Bison [23]. The parser is used by liboctopus_server to gener-
ate an abstract syntax tree for record queries sent to the server, but also by
the clients to read data from records received from the server. Using a des-
ignated parser also leads to a clean interface with the SKB: In case we send
a request to the server, liboctopus_server is responsible for parsing the in-
coming request. The resulting abstract syntax tree (AST) is then passed on
to the SKB, which translates the AST into a Prolog query and executes the
query, using our storage implementation written in Prolog.

4.2 Client–Server Connection

In Figure 4.1, we see that a client has two connections to the server: a regular
Flounder binding (referred to as the event binding) to receive asynchronous
events (namely trigger events and published records) and a THC binding
used for all communication from client to the server. A client talks to the
server by using remote procedure calls (RPC). The THC and the event bind-
ing use the same Flounder interface. This design has the advantage that a
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Figure 4.1: Architectural overview of the Octopus coordination service.

server can send trigger or subscription messages back over the event bind-
ing or the THC binding. A client can decide to handle the event binding
either in the main thread (Client 1) or in a separate event thread (Client 2).
The architecture a client should choose depends on the application.

4.3 Implementation in Prolog

One of the main challenges for this project was to come up with a database
implementation for records as well as record queries (for subscriptions and
triggers). We wanted to use the Barrelfish SKB for this: The SKB already
serves as a centralized storage pool for information needed by Barrelfish,
therefore it seemed appropriate as the storage area for records. In addi-
tion, with an implementation in Prolog it is possible for the existing Prolog
code in Barrelfish to read and store records, and even generate trigger and
subscription events as well. Thus, we had to integrate our service with
the ECLiPSe CLP Prolog engine. Typical searchable key–value storage sys-
tems usually rely on B-trees or similar data structures for indexes that store
pointer to in-memory records. This architecture allows to do fast lookups
in a space efficient fashion. Prolog as a language is quite different from
regular imperative languages such as C. First of all, there is no concept like
references or pointers. In case we want to modify any Prolog data structure,
the engine creates a copy and modifies the copy. To make things worse, the
now outdated data structure must be garbage collected by ECLiPSe. The
collection and copying affect the performance in a major way. For a detailed
discussion of the problem see Section 5.2.2. ECLiPSe provides non-logical
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data storage implementations, written as external C predicates, to avoid this
limitation. In case we wanted a very efficient system, we could have just im-
plemented everything as external C predicates. However, then there would
have been no point in using Prolog in the first place. On the other hand,
because Prolog is a declarative language, it allows to express the matching
of constraints against records in a nice way. In addition, the built-in back-
tracking mechanism of the language allows us to easily find several matches
of records or abort and continue with the next record in case a constraint
can not be satisfied. For these reasons, our implementation is a trade-off
between expressiveness and efficiency and is quite different from traditional
key–value stores: We store records and record queries as Prolog terms, us-
ing the non-logical ECLiPSe storage APIs. Matching constraints in records,
backtracking over stored records or finding subscriptions is implemented
in Prolog. Although this approach works on its own, we added some opti-
mizations to reduce the amount of records or subscriptions we have to con-
sider when a query is executed. We explain the storage implementation for
records, subscriptions and triggers in more details in the following sections.

4.4 Record Storage and Retrieval

Our implementation uses a non-logical hash table, provided by ECLiPSe, to
store records. When the SKB receives the parsed AST for a record query, it
will walk through the tree and generate Prolog terms for the record name as
well as any encountered attributes and constraints. For set calls, attributes
are transformed into an ordered set in Prolog (i.e., a sorted list). Using the
record name as the key, we store the attribute set into the hash table. In
case we want to retrieve a record, the corresponding query is parsed and
translated into Prolog terms. Prolog then matches the resulting constraint
terms against the stored records.

4.4.1 Attribute Index

Using a hash table allows queries that specify a record name to complete in
constant time, independent from the amount of records we store. However,
our queries also allow to search for arbitrary records, based on the values
of attributes. In the beginning, the execution of these queries was very in-
efficient because we could not rely on hashing and had to iterate over all
records until we found a match. For this reason, we decided to build an
attribute index for queries. Our index for record retrieval remembers for
every attribute the names of records containing the attribute. This approach
can be compared to the workings of a simple boolean search engine. As an
example, consider the following record from Barrelfish:
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hw.pci.rootbridge.1 { acpi_node: 1, bus: 0, device: 0,
function: 0, maxbus: 255 }

If this record is inserted in our storage system, we have to insert the name
hw.pci.rootbridge.1 into the index for acpi_node, bus, device, function
and maxbus. The system finds an individual attribute index by a hash table
lookup. The index itself is implemented as an ordered set. We used a skip
list [19] data structure to represent the set. Skip lists behave similar to binary
trees, which means we can insert an entry into the index in O(log(n)) time,
given that we have the right amount of skip pointers and they are distributed
in an optimal way among the entries of the list. For retrieval, we are now
able to do an index intersection based on the attributes we specify in the
query. Consider this query, used in Barrelfish to find all PCI root bridges:

r’hw\.pci\.rootbridge\.[0-9]+’ { acpi_node: 1, bus: _, device: _,
function: _, maxbus: _ }

It expresses that we are interested only in records containing all five at-
tributes and the regular expression in the beginning matches the record
name. In order to avoid matching a lot of records with different attributes,
we find the index for all five attribute names and compute an intersection of
the sets. The intersection algorithm sorts the skip lists by increasing length
and then continues to find the elements of the first list in all the others. Skip
pointers allow us to skip many entries that are not relevant for our intersec-
tion, therefore making the intersection more efficient. The index and the in-
tersection code is written in C. This implementation minimizes the garbage
produced in Prolog as we can traverse the skip lists in-place during the inter-
section: Our Prolog code uses a non-deterministic external C predicate to do
the intersection. The C predicate starts the intersection and returns the first
record name that contains all attributes. Our Prolog implementation will
then fetch the record, match the individual attributes and the record name
(in our example it will verify that the record name matches the regular ex-
pression and acpi_node is indeed one). In case this matching fails, Prolog
backtracks to the intersection predicate and our intersection algorithm will
produce the next result, until no more names are found.

You may notice that there is still an extreme case where we cannot make use
of our attribute index. Consider a query in the following form:

r’name[0-9]’ {}

Here, we have to iterate over all currently stored records to find one whose
name matches the given regular expression. It is especially bad as we have
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to invoke the regex engine every time until we find a match. It is good prac-
tice to always include the attributes of interest in a query. Not only does it
reduce the computing overhead on the server, it also ensures that a record
contains the relevant information once it is read on the client side.
Right now, ECLiPSe uses the PCRE regex library [29] to match regular ex-
pressions. It might be worth it to restrict the complexity of expressions in
the future and use a trie data structure to do the matching in linear time.

4.5 Triggers and Subscriptions

Our service also needed a way to store triggers or subscriptions. Triggers
and subscriptions are different from records as they are expressed as a
record query. Instead of just attribute–value pairs we also need to store
constraints. The trigger and subscription storage works similar to the one
for records: We used the non-logical hash table, provided by ECLiPSe, to
store the queries as an ordered set of constraints. This time, the ID of the
trigger or subscription serves as the key for the hash table. The problem
we face here is inverse to the one of record retrieval: How do we find rele-
vant triggers or subscriptions given a record? As an example consider the
following record and two record queries:

hw.apic.1 { cpu_id: 0, id: 1, enabled: 1 }

_ { cpu_id: 1, enabled: 1 }
_ { enabled: 1 }

Lets assume the two queries are registered as subscriptions in the system
and we publish the record with the three attributes cpu_id, id, and enabled.
Both subscriptions match the provided record. We maintain an index for
every attribute. These indices contain the IDs of currently registered sub-
scriptions, if the subscription query contains the attribute in question. The
index is implemented as a bitmap. A bit, corresponding to the subscription
ID is set in the bitmap if the subscription contains the attribute. In the con-
text of our example: In case we receive the record named hw.apic.1, the
system will gather the bitmaps for all three attributes in the record and do
a union of the three sets. Union is done by applying the bitwise OR oper-
ator on the bitmaps. We implemented the bitmap index using external C
predicates working exactly like the index used for record retrieval.

For triggers and subscriptions, we also have the following special case where
no attributes are given in a query:

_ {}
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A query in this form will match with any record. We use a separate bitmap
to track these subscriptions or triggers and always include it if we do a union
over bitmaps.

4.6 Creating Synchronization Primitives with Octo-
pus

One of the requirements for our service is the ability to be able to build
synchronization primitives on top of it. In this section, we show our im-
plementations, available in liboctopus, for locks, barriers and semaphores.
An advantage of our service is that its API allows us to implement all the
synchronization APIs on top of the described Flounder interface, without
modifications on the server side. This should make it easier for program-
mers to write their own primitives, adjusted to their needs, in the future.
You may notice that the provided recipes are akin to the algorithms used
in Zookeeper or similar lock-services. The ideas are transferable to our ser-
vice because our API uses the same ideas (especially triggers). In compari-
son with Zookeeper, our implementations require fewer lines of code. This
reduction stems mostly from having a more dynamic trigger mechanism.
Another advantage is that the THC binding allows us to wait for incoming
asynchronous messages. This means we can build blocking synchronization
primitives without the need for some form of thread-level synchronization
because we do not need to coordinate with the event binding. In theory, we
could achieve the same with a regular RPC binding, but the Flounder stub
generator currently does not support this. On the other hand, it might be
worth it to explore if the THC constructs can help to realise more sophisti-
cated coordination algorithms in the future. In case we need to write asyn-
chronous primitives, it is still possible to use the event binding to receive
trigger events.

4.6.1 Locks

We used the Octopus key–value store to implement distributed locks. This
type of distributed lock is intended for coarse grained locking (i.e., locks
held for minutes–hours) as the overhead of the lock operation might be too
large to use them for fine grained access control. Listing 1 shows the work-
ings of the locking algorithm in pseudocode: We omitted some parts of
the error handling, memory management and type declarations for simplic-
ity. A client locking a resource will create a sequential record (i.e., a record
whose name is appended with a unique, sequential increasing number), us-
ing a name previously agreed upon by all involved parties. Afterwards, the
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client tries to find all existing lock records for this particular name. Because
we used sequential records we can sort the retrieved record names to have a
well defined order over all records waiting for the resource. The algorithm
then uses this list like a queue: The position of our own lock record in the
list tells us how many clients will receive the lock before us. If our record
is the lowest entry, we hold the lock for the resource and can proceed. Oth-
erwise, we issue an exist call on the record one below our position in the
names array. We also pass a trigger along with this exists call. We program
the trigger to be installed in case the record still exists at the time the query
is executed on the server, and set it to trigger once the record is deleted. In
case the record still existed, we wait for the trigger to notify us if the record
gets deleted. The while loop ensures that a client, awakened by a deletion
of a record not having the lowest sequence at the time, will not accidentally
become the lock owner. Note that this code holds some desired properties:
It is free of starvation and fair as the lock is always granted to the longest
waiting client. It also does not suffer from a herd effect: In case we delete a
record, only one involved party is woken up.

4.6.2 Barriers

Barriers are used to make sure the execution of code sections for multiple
clients happens simultaneously. Listing 2 and Listing 3 show the implemen-
tation of a double barrier we built on top of Octopus. Every client who
enters a barrier creates a sequential record. A get_names query is used to
find out how many clients are currently waiting on the barrier. In case the
threshold is not reached, the client waits for the creation of a special record,
created by the last client that enters the critical section. This record is used
to wake up all involved parties in the process. Leaving a barrier works the
other way around: Each client deletes the record it created upon calling
oct_barrier_enter, and waits until the extra record is deleted by the last
client leaving the barrier.

4.6.3 Semaphores

Chips has integrated support for distributed semaphores, a feature used
by libposixcompat in Barrelfish. To replace Chips (see Section 6.1), we
implemented distributed semaphores on top of Octopus. Listing 4 shows
the implementation in pseudocode. To increase the semaphore value by one
(oct_sem_post), we create a sequential record. To decrease (oct_sem_wait),
we try to delete one record. In case no record is found, or the record has been
deleted between the get and del call, we wait until another record is created
and try again. Note that this implementation is not optimal right now. It
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suffers from a herd effect: In case one record is added using oct_sem_post
we wake up all clients waiting for a trigger event in oct_sem_wait. We could
avoid this by using our locking implementation to coordinate the execution
of the while loop.
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1 errval_t oct_lock(const char* lock_name, char** lock_record)
2 {
3 oct_set_get(SET_SEQUENTIAL, lock_record, "%s. { lock: ’%s’ }",
4 lock_name, lock_name);
5 oct_read(*lock_record, "%s {}", &name);
6

7 while (true) {
8 oct_get_names(&names, &len, "_ { lock: ’%s’ }", lock_name);
9 found = false;

10 for (i=0; i < len; i++) {
11 if (strcmp(names[i], name) == 0) {
12 found = true;
13 break;
14 }
15 }
16 assert(found);
17

18 if (i == 0) {
19 // We are the lock owner
20 return SYS_ERR_OK;
21 }
22 else {
23 // Someone else holds the lock
24 // Wait for our predecessor to delete
25 t = oct_mktrigger(SYS_ERR_OK, OCT_ON_DEL,
26 oct_BINDING_RPC, NULL, NULL);
27 cl = oct_get_thc_client();
28 cl->call_seq.exists(cl, names[i-1], t, &tid, &err);
29 if (err_is_ok(err)) {
30 cl->recv.trigger(cl, &tid, &fn, &mode,
31 &record, &state);
32 }
33 }
34 // Our predecessor deleted his record;
35 // need to re-check if we are really the lock owner now
36 }
37 }
38

39 errval_t oct_unlock(const char* lock_record)
40 {
41 return oct_del(lock_record);
42 }

Listing 1: Pseudocode for the locking algorithm. We show the two opera-
tions, lock and unlock, implemented in liboctopus.
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1 errval_t oct_barrier_enter(const char* name, char** barrier_record,
2 size_t wait_for)
3 {
4 oct_set_get(SET_SEQUENTIAL, barrier_record,
5 "%s. { barrier: ’%s’ }", name, name);
6 oct_get_names(&names, &current_records, "_ { barrier: ’%s’ }",
7 name);
8

9 if (current_records != wait_for) {
10 t = oct_mktrigger(OCT_ERR_NO_RECORD, oct_BINDING_RPC,
11 OCT_ON_SET, NULL, NULL);
12 cl = oct_get_thc_client();
13 cl->call_seq.exists(cl, name, t, &tid, &err);
14 if (err_is_ok(err)) {
15 // Barrier already exists
16 }
17 if (err_no(err) == OCT_ERR_NO_RECORD) {
18 // Wait until barrier record is created
19 cl->recv.trigger(cl, &tid, &fn, &mode, &record, &state);
20 err = SYS_ERR_OK;
21 }
22 }
23 else {
24 // We are the last to enter the barrier,
25 // wake up the others
26 oct_set(name);
27 }
28

29 return err;
30 }

Listing 2: Algorithm to enter a barrier in Octopus. Every client creates one
record and checks how many barrier records already exist.

30



4.6. Creating Synchronization Primitives with Octopus

1 errval_t oct_barrier_leave(const char* barrier_record)
2 {
3 oct_read(barrier_record, "%s { barrier: %s }", &rec_name,
4 &barrier_name);
5 oct_del(rec_name);
6

7 err = oct_get_names(&names, &remaining_barriers, "_ { barrier: ’%s’ }",
8 barrier_name);
9 if (err_is_ok(err)) {

10 cl = oct_get_thc_client();
11 cl->call_seq.exists(cl, barrier_name, t, &tid, &err);
12 if (err_is_ok(err)) {
13 // Wait until everyone has left the barrier
14 cl->recv.trigger(cl, &tid, &fn, &mode, &record, &state);
15 }
16 else if (err_no(err) == OCT_ERR_NO_RECORD) {
17 // already deleted
18 err = SYS_ERR_OK;
19 }
20 }
21 else if (err_no(err) == OCT_ERR_NO_RECORD) {
22 // We are the last one to leave the barrier,
23 // wake up all others
24 err = oct_del(barrier_name);
25 }
26

27 return err;
28 }

Listing 3: Algorithm to leave a barrier. Every client will delete his record,
created during oct_barrier_enter.
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4. Implementation

1 errval_t oct_sem_post(uint32_t id)
2 {
3 return oct_mset(SET_SEQUENTIAL, "sem.%d. { sem: %d }", id, id);
4 }
5

6 errval_t oct_sem_wait(uint32_t id)
7 {
8 t = oct_mktrigger(OCT_ERR_NO_RECORD,
9 oct_BINDING_RPC, OCT_ON_SET, NULL, NULL);

10 char query[size];
11 snprintf(query, sizeof(query),
12 "r’sem\\.%d\\.[0-9]+’ { sem: %d }", id, id);
13

14 while (true) {
15 cl = oct_get_thc_client();
16 cl->call_seq.get(cl, query, t, &result, &tid, &err);
17 if (err_is_ok(err)) {
18 del_err = oct_del(result);
19

20 if (err_is_ok(del_err)) {
21 break; // Decreased successfully
22 }
23 else if (err_no(del_err) == OCT_ERR_NO_RECORD) {
24 continue; // Race lost, need to start over
25 }
26 }
27 else if (err_no(err) == OCT_ERR_NO_RECORD) {
28 // No record found, wait until one is posted
29 cl->recv.trigger(cl, &tid, &fn, &mode,
30 &trigger_result, &state);
31 }
32 }
33 return err;
34 }

Listing 4: Pseudocode for the semaphore implementation. The post opera-
tion is implemented by creating a sequential record, the wait operation tries
to delete a record.
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Chapter 5

Performance Evaluation

This chapter describes the benchmarks we did for the Octopus service in
Barrelfish and shows the achieved results. We also compare our service to
Redis, which is similar to our service in terms of implementation.

5.1 Test Setup

We executed all benchmarks on a system equipped with two AMD Santa
Rosa (Opteron 2200) CPUs running at 2.8 GHz on a TYAN Transport VX50
B4985 mainboard. Server and client were pinned to separate cores on the
same package during our measurements.

5.2 Remarks

5.2.1 Parameter Tuning & Flags

For the following Benchmarks we changed some limits enforced by ECLiPSe

CLP in order to support a large amount of records:

DICT_HASH_TABLE_SIZE: Increased from 8 192 to 2 097 152. Currently, record
names and attribute names are stored as atoms in the system (see Sec-
tion 2.2.1). This reduces the amount of garbage produced and allows
us to do constant-time comparisons for strings. With a size of 8 192
entries this becomes a bottleneck in case large amounts of records are
stored.

DICT_DIRECTORY_SIZE: Increased from 512 to 2 048. The amount of atoms
that can be stored is limited by the size of this directory. A value of
2 048 lets us have a total of 2 097 152 atoms (in combination with the
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5. Performance Evaluation

default DICT_ITEM_BLOCK_SIZE of 1 024). Once this amount is reached,
ECLiPSe fails to execute any queries that involve adding new atoms.
The engine has a dictionary garbage collector that periodically removes
atoms not needed anymore.

HTABLE_MAX_SIZE: Increased from 1 048 576 to 2 097 152. This defines the
maximum size of the hash table used by the storage API to store
records.

The ECLiPSe compiler has the debug_compile flag turned on by default. This
leaves some debug instructions for tracing in the code, slowing down the
execution. During our benchmarks we turned this feature off.

The garbage collector runs based on watermarks for the global and the trail
stack. Collecting garbage caused a significant overhead in our measure-
ments. We disabled the garbage collector for most of our experiments. How-
ever, for some long running experiments it was necessary to enable garbage
collection otherwise ECLiPSe would fail. We discarded the outliers where
the garbage collector ran, including a number of subsequent measurements
that were disturbed as a result of the collection.

The Flounder stubs allow to enqueue only one message at any point in time
in the messaging system. We overcame this limitation by building a queue
on top of Flounder. During our measurements, we noticed that in some
cases, replies from our server could not be sent directly and therefore had
to be put in the queue, which caused an overhead of a few 1 000 cycles.
This might seem counterintuitive at first as all communication between the
client and server is done over RPC. A client blocks until he has received
a response and cannot issue a new request. However, we used Flounder
continuations to clean-up memory after a reply has been sent back to the
client. This continuation is executed in the context of an event, so it is
possible that a new request is issued from the client before the continuation
is executed, therefore blocking the direct sending of the next reply. Because
this is an issue of the current Flounder wait-set implementation we ignored
these outliers in our experiments.

Another factor that had an impact on our measurements was the choice of
the memory allocator. The current Barrelfish malloc and free implementa-
tion uses a simple free list and caused a lot of calls to lesscore & morecore
for our allocation pattern. These calls are costly since we need to request
memory and map it into the domains address space. We avoided this by us-
ing the dlmalloc memory allocator [24] which is more cautious in mapping
and releasing memory.
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5.3. Storage API

5.2.2 ECLiPSe & Prolog

Initially, we tried to write most of the server functionality, including data
storage, directly in Prolog. This allowed for fast prototyping but turned out
to be very inefficient. Figure 5.1 shows the performance of a get-by-name
call (i.e., a query that does not use a constraint for the record name) with
increasing amounts of records stored. The first implementation uses the
Prolog predicates assert and retract to store records as dynamic Prolog
predicates. Dynamic predicates are stored in an ordered list by ECLiPSe,
which means the time to retrieve a record should increase linear with the
amount of records stored. However, our measurements showed that the
cycles started increase significantly after 2 000 records. This approach was
found to be too inefficient for our storage API.
The second implementation uses a hash table, written in Prolog, to store
records based on their names as keys. As we can see, the latency for a single
get call still increases linearly with the amount of records, even tough the
algorithmic complexity of the underlying data structure suggests a constant
access time. Listing 5 shows that 98 percent of the time in ECLiPSe is spent
in garbage collection and getval_body (used to retrieve the hash table that
stores all records). In order to support backtracking and logical unification,
even for a simple get operation, Prolog needs to copy the whole hash table
during getval_body and clean it up afterwards in garbage_collect. This
effect becomes even worse in case we want to insert a record as we need to
copy first to obtain the hash table containing all the records and copy again
once we want to store the modified table. This implementation is a good
example to showcase the problems when storing data in Prolog. To our
knowledge, in ECLiPSe CLP it is not possible to avoid this without using
external predicates written in C.

5.3 Storage API

5.3.1 Retrieve Performance

The performance of get operations depends on how the query sent to the
server is formulated. The fastest queries are the ones that specify a record
name in the query. In that case, only one record must be considered and can
be found in constant time through a hash table lookup. Figure 5.2 shows, for
a get-by-name call the look-up time is indeed constant for an arbitrary size
of records stored in the system. The amount of records that can be stored
is currently limited by the size of the directory ECLiPSe uses to store atoms.
However, this limitation can be avoided by switching to strings for record
names.
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Figure 5.1: This graph shows the latency for a single get call while increasing the amount of
records stored in the system for two different storage implementations written entirely in Prolog.
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Figure 5.2: Latency to retrieve a single record with increasing amounts of records stored in the
system. We show graphs for the total amount of cycles spent for the RPC call and the amount
of time spent in ECLiPSe during the RPC call.
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5.3. Storage API

PROFILING STATISTICS
--------------------

Goal: get_100000
Total user time: 6.28s

Predicate Module %Time Time %Cum
--------------------------------------------------------
garbage_collect /0 sepia_kernel 54.5% 3.42s 54.5%
getval_body /3 sepia_kernel 43.5% 2.73s 98.0%
term_hash /4 sepia_kernel 0.6% 0.04s 98.6%
hash_find /3 hash 0.3% 0.02s 98.9%
sort /4 sepia_kernel 0.3% 0.02s 99.2%
get_object /4 eclipse 0.2% 0.01s 99.4%
match_attribute /2 eclipse 0.2% 0.01s 99.5%
hash_entry /3 hash 0.2% 0.01s 99.7%
min1 /4 sepia_kernel 0.2% 0.01s 99.8%
member /2 sepia_kernel 0.2% 0.01s 100.0%

Yes (6.33s cpu)

Listing 5: ECLiPSe profiling output for get operations while using a hash
table, written in Prolog, for storage.

Figure 5.3 shows the cycles spent for individual parts of the system during
a single get-by-name call. We can see that about 75 percent of the time is
spent in ECLiPSe. The parser, memory allocation and Flounder message
passing are responsible for the other 25 percent. These three areas should
remain constant throughout all queries and RPC calls whereas the ECLiPSe

CLP system will require even more cycles for more expensive queries. This
graph shows that the best way to achieve higher performance would be
to try and improve the code executed by ECLiPSe. Profiling the ECLiPSe

code reveals that the most expensive function is store_get, used to retrieve
a record from the hash table (see Listing 6). This is as expected and shows
that our implementation does suffer from any other bottlenecks; for example,
due to memory management.

In Figure 5.4, we see a benchmark for get queries where no exact record
name is given and the record is identified only by a set of attributes. For this
experiment we added up to 20 000 records to the system, all with a total of
5 attributes chosen at random from a set of 5, 10, 15 and 20 attribute names.
We measured the time to get a single record identified by 5 attributes. We
made sure that the record we are trying to retrieve has a higher lexicographi-
cal ordering than the others. This means we always traverse the whole index
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Figure 5.3: Overview of costs for a single get by name call.

to find the record, therefore we simulate a worst case scenario. The graph la-
belled as "5 Arguments" resembles the baseline: In that case our index does
not help at all because all records contain the same 5 attributes and we have
to match all records in order to find our record of interest. The graph made
from records with a set of 20 attributes represents the other extreme: We are
looking at (20

5 ) = 15 504 different attribute combinations for our records. In
the experiment, the index intersection only returned one result for our red
graph in all cases. The linear growth we see is the increasing cost of the
intersection algorithm due to growing indexes (for 20 000 records our index
contains about 5 000 records per attribute). The reader should note that this
is a somewhat artificial example. In reality, we usually have multiple groups
of records with disjoint sets of attributes instead of a uniform distribution of
records among all attributes. The index should be even more useful in that
case.

5.3.2 Add Performance

Because we have to maintain our index for every record we insert, the inser-
tion cost increases with the amount of records stored. Figure 5.5 shows a
benchmark where we measured the cost of adding one record to the system
while varying the amount of records already stored. We made sure that the
name of the inserted record has a higher lexicographical ordering to ensure
our record name is always placed at the end of the index. The graphs show,
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5.3. Storage API

PROFILING STATISTICS
--------------------

Goal: get_1000000
Total user time: 0.48s

Predicate Module %Time Time %Cum
--------------------------------------------------------
store_get_ /4 sepia_kernel 29.8% 0.14s 29.8%
get_object /4 eclipse 8.5% 0.04s 38.3%
match_object /3 eclipse 8.5% 0.04s 46.8%
do__2 /1 eclipse 8.5% 0.04s 55.3%
sort /4 sepia_kernel 8.5% 0.04s 63.8%
match_constraints /2 eclipse 6.4% 0.03s 70.2%
garbage_collect /0 sepia_kernel 6.4% 0.03s 76.6%
append /3 sepia_kernel 6.4% 0.03s 83.0%
make_all_constrain/3 eclipse 4.3% 0.02s 87.2%
maplist_body /4 lists 4.3% 0.02s 91.5%
min1 /4 sepia_kernel 4.3% 0.02s 95.7%
get_by_name /3 eclipse 2.1% 0.01s 97.9%
sort /2 sepia_kernel 2.1% 0.01s 100.0%

Yes (0.53s cpu)

Listing 6: ECLiPSe profiling output for get operations.

with a sufficiently large level for the skip list (i.e., the maximum amount of
forward pointers per node) the index insertion cost is negligible.

5.3.3 Comparison with Redis

The current implementation makes our system comparable to Redis [30].
Although Redis is a more mature systems with more features they still share
some similarities:

1. Both use single-threaded servers (Redis supports replication by launch-
ing multiple instances)

2. Both are mainly used for in-memory data storage (Redis has some
support for persistent storage)

3. All commands sent involve IPC roundtrips

For this Benchmark, we measured the throughput of a simple get opera-
tion with a 256 byte payload. We ran Redis (version 2.4.7) on Linux 2.6.32
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Figure 5.4: Benchmark for a get call of one record identified by 5 attributes with increased
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pinned to one core. We used the provided redis-benchmark program to
measure the throughput of get operations. We configured Redis to use a
Unix domain socket for the communication between the client and server.
Please note that this Benchmark does not provide a very good comparison
between the two services. We are running on completely different operat-
ing systems with different IPC mechanisms and costs involved for them. In
a fairer comparison we expect Redis to perform even better since the send–
receive process with Unix domain sockets includes an additional system call
as opposed to UMP’s shared memory implementation. However, the graph
(Figure 5.6) shows that on the same hardware the peak of operations for
Redis is at about 90 000 whereas for Octopus it is only at 60 000. What must
be considered here is that just the start-up of the ECLiPSe engine yields a
considerable overhead which impacts the throughput of our service. We ran
some tests where we executed a simple query on the engine (i.e., true.) and
measured about 6 000 cycles for its execution. At the current scale Barrelfish
is operating we expect Octopus to be efficient enough. In case the need for
a faster service arises in the future, the best way to improve performance
would be to avoid using an intermediate language such as Prolog.
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Chapter 6

Case Study: Applying Octopus in
Barrelfish

This chapter explains how we used Octopus to restructure the Barrelfish
boot process. We replaced the name server implementation and wrote a de-
vice manager for Barrelfish. With the help of Octopus, the device manager is
capable to find out about installed devices and start the appropriate drivers.

6.1 Replacing Chips

In order for programs to connect to one another, Barrelfish uses a name
server (Chips). Clients interact with Chips, to store and retrieve interface
references (irefs) based on names. In addition, Chips has an API for block-
ing lookups on irefs: This allows programs to wait until a specific service
is running and ready to accept connections. Due to the lack of proper dis-
tributed synchronization primitives, Chips is also used for synchronization:
Programs register dummy service references to signal certain events in the
system. Those interested in the event can do a blocking lookup on this par-
ticular service reference to wait for the signalization of the event. Using this
technique, it is even possible for a programmer to build barriers by having
one client act as a coordinator.
Octopus is a perfect fit for all these tasks, so we decided to replace Chips.
Service references are now stored as records. This allows us to implement
all of the previous functionality Chips offered (i.e., lookup and waiting for
service references to appear). With Octopus, it is also possible to extend
the existing name service client API in the future; for example to store ad-
ditional information along with the iref, such as the type of the interface
or to get notifications in case a service record is changed or deleted. One
limitation of the current implementation is that we use a regular Flounder
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6. Case Study: Applying Octopus in Barrelfish

RPC binding to invoke calls on the Octopus server instead of the THC bind-
ing provided by liboctopus. Some service reference lookups are performed
early in the start-up code. In that phase, memory allocation is limited to a
maximum of one page per allocation. However, if we use a THC binding,
we need to allocate a much larger stack. This is a limitation of the current
Barrelfish memory server and is likely to be fixed in the future, rendering
the extra binding unnecessary.

6.2 PCI Refactoring

Barrelfish had one service, called pci, to initialize, configure and program
ACPI, PCI and I/O APICs. From an architectural standpoint it made sense
to decouple pci into three different services. This allows to evolve them
independently while using well defined Flounder interfaces for communica-
tion. The architecture should also be more flexible in the event of hardware
changes such as the introduction of a completely new bus or interrupt con-
troller. We explain the new architecture based on Figure 6.1: ACPI gathers
information about installed CPU cores (in the form of local APICs), PCI root
bridges, interrupt overrides and I/O APICs and stores this informations in
the SKB. PCI does bus enumeration and is responsible for programming the
PCI BARs. It uses the SKB to aid with the configuration. PCI also needs
to talk to ACPI during bus enumeration (in case a new PCI root bridge is
found) and to register interrupts for specific devices. PCI exports an inter-
face that allows drivers (e1000 or serial in this example) to retrieve capabili-
ties to access the memory regions of the device. I/O APIC is used to enable
device interrupts and route them to individual local APICs. I/O APIC, PCI
and ACPI need to talk to the monitor to get the capabilities for physical ad-
dress or I/O regions. Of course, in reality every user-space program has a
connection to the monitor, but in our diagram we restricted the connections
and show only the ones relevant for the explanation. Fish is the Barrelfish
shell. It communicates with ACPI to provide commands for reset and shut-
down. Fish also needs to talk to the serial driver to handle input and output.
Kaluga is the new device manager. It makes sure everything is started in
correct order (see Section 6.3).

6.3 Kaluga Device Manager

We built the Kaluga device manager for Barrelfish based on the Octopus
service. Until now, a user had to add drivers manually to the bootscript,
therefore requiring a great deal of knowledge about the installed hardware.
With Kaluga it is now possible to start drivers automatically in case the
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Figure 6.1: Architectural overview after the PCI refactoring. The diagram shows the different
services running as user-space programs in the system, the exported interfaces for each service
and the connections between services.
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required hardware is found at startup or later in the event of hot plugging.
Octopus allows Kaluga to be generic: The service is currently used to start
PCI drivers as well as CPU drivers but can easily be extended — for example
to support USB. In the following sections, we explain the current state of
work and in which direction we want to go from there.

6.3.1 General Design

Deciding what drivers an operating system can start depends mostly on two
factors: The available hardware and available driver binaries. The key idea
for the Barrelfish architecture is to structure the OS like a distributed system.
A distributed system should handle node removals, failures or attachments.
In terms of device drivers this means for example the removal of a PCI card,
plugging in USB devices or failure of a core, all while the system is up and
running. These requirements made Octopus a good fit to use in a device
manager. When Kaluga starts, its first task is to parse the menu.lst boot
script to find out about all available driver binaries. Currently, the filesystem
support in Barrelfish is still limited. We do not allow driver binaries to be
added at runtime. However, if a real filesystem is used in the future, we
can extend the current system to watch out for new drivers added at run
time. After parsing the boot script, Kaluga starts ACPI. ACPI will then
add specific Octopus records for every PCI root bridge, local APIC and I/O
APIC it finds. Meanwhile, Kaluga will place various get_names calls to find
the records, but also register triggers to receive events about forthcoming
changes concering these records. As an example, we provide the following
query used by Kaluga to watch for I/O APICs:

r’hw\\.ioapic\\.[0-9]+’ { id: _, address: _, irqbase: _ }

In case a record is found, Kaluga will react by starting the appropriate
drivers: If Kaluga finds an I/O APIC record it will start the I/O APIC driver,
in case a PCI root bridge record is found it will start the PCI bus driver. For
every local APIC record, Kaluga will send a core boot request to the monitor.
This scheme stays the same for PCI: Once the PCI bus driver is started, it will
most likely discover new devices and thereupon add records for each PCI
device. Kaluga will pick up the records, either through the initial get_names
call or through a trigger event.

6.3.2 SKB Driver Entries

Kaluga needs to figure out which driver to start for a given record. For this
reason, we added a mapping database to the SKB. The following snippet is
an entry made for the current AHCI driver:
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pci_driver{
binary: "ahcid",
supported_cards:
[ pci_card{ vendor: 16’8086, device: 16’2922,

function: _, subvendor: _, subdevice: _ },
pci_card{ vendor: 16’8086, device: 16’3a22,

function: _, subvendor: _, subdevice: _ },
pci_card{ vendor: 16’1002, device: 16’4390,

function: _, subvendor: _, subdevice: _ } ],
core_hint: 0,
interrupt_load: 0.5,
platforms: [’x86_64’, ’x86_32’]

}.

In case Kaluga receives a PCI device record, it will query the SKB to figure
out which binary to start and on what core. Kaluga will read information
such as vendor and device ID from the record and pass it on to the SKB. The
SKB then tries to find a matching entry by looking at the supported_cards
argument in the driver entries. core_hint, interrupt_load and platforms
are currently not of much use. In the future, we plan to include these at-
tributes to evaluate on which core a driver should run. interrupt_load
is intended to help place drivers that are expected to produce heavy inter-
rupt traffic (e.g., a 10 Gbit/s Ethernet driver) on a separate core whereas a
mouse and keyboard driver can easily run on the same core. Right now, the
query will just use the core_hint argument as the core recommendation for
Kaluga.

6.3.3 Starting Drivers

Once Kaluga knows which driver to start there is also the question of how
to start the driver. The answer can vary heavily depending on the device: A
CPU driver is started by a boot-core request message to the local monitor. A
network drivers always needs an instance of netd running beside the driver.
At last, we have the issue with multiple devices of the same type in a system.
Do we start multiple instances of a driver — as we do for CPU cores — or
is one driver capable to handle all devices? We decided to allow for custom
start functions for every binary found by Kaluga. The default start function,
set for each binary on parsing the boot script, will just start every driver
exactly once by using the spawn daemon. However, for CPU drivers or
network drivers we can override this behavior: To start a CPU driver we
send a message to the monitor. For network cards, we start the driver and
an instance of netd. For most cases a driver programmer does not have to
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worry about custom start-up functions as the default start function should
suffice. Therefore, all he needs to do is to add a driver entry to the SKB.

48



Chapter 7

Related Work

Coordination in distributed systems has been addressed by an abundance
of research. With the massive scale out in the days of the Internet, the
trend continues towards distributed systems with thousands of machines
located all around the world. Thus, leading to the development of highly
sophisticated coordination services in the form of data-center lock managers,
key–value data stores or publish–subscribe systems. This chapter gives an
overview of existing research and systems related to this thesis.

7.1 Publish–Subscribe Systems

The publish–subscribe paradigm is a well-established interaction pattern
and allows for flexible communication within a distributed environment,
taking into consideration the decoupled nature of distributed systems. A
typical publish–subscribe system knows two different types of interacting
parties: A publisher, responsible for the generation of events and a sub-
scriber, consuming the events generated by a publisher. Eugster et al. [22]
give an overview and characterization of different publish and subscribe
systems. They show that the publish–subscribe paradigm features 3 key
elements:

Space decoupling: The interacting parties do not need to know each other.

Time decoupling: Interacting parties do not need to be actively participat-
ing at the same time.

Synchronization decoupling: Publishers are not blocked while producing
events, and subscribers can get asynchronously notified while perform-
ing some concurrent activity.

Further, they categorize different systems into three categories:
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Topic-based systems [2, 30] lets consumers subscribe to given topics (usu-
ally identified by a name) and producers generate events for given topics.
Systems can support hierarchical or flat identifiers. Hierarchical addressing
allows for more flexibility as topic relations can be expressed by the pro-
grammer. Topic-based systems are very similar to group communication
[18].

Content-based systems [8] lets consumers use constraints to specify their
subscriptions based on the content of the published messages. This allows
for more expressiveness at the cost of additional complexity. Constraints
(also known as filters) usually consist of logically combined comparisons.
They are passed to the publish–subscribe system as regular strings, formu-
lated in an intermediate language such as SQL or by writing executable code
directly in the form of filter objects or functions.

Type-based systems make use of a better integration with object-oriented,
high-level languages by directly associating events with types. Systems can
exploit the static type checking at compile time to guarantee more safety.

Note that these three categories are not necessarily mutually exclusive. So
called hybrid systems [16] do exist. Usually this means that the system has
the characteristics of a content-based system combined with topic-based or
type-based behavior.

7.2 Generative Communication

In 1985, David Gelernter proposed a new concurrent programming model
(generative communication) [10] as opposed to already existing models such
as shared variables, message passing and remote procedure calls (RPC). The
basis for generative communication is a so called tuple space (TS). Concur-
rent processes that make up a distributed program usually share a common
TS. Three simple functions out() (adds a tuple to the TS), in() (reads and
removes a tuple from the TS, blocks if no matching tuple is found) and
read() (reads a tuple without removing it in the TS) form the basic opera-
tions defined over a tuple space. A programmer can use these operations
to build more complex interaction patterns. One advantage of generative
communication is the delocalization of information. In comparison with
publish–subscribe, tuple spaces share the two properties space and time
decoupling. However, they do not exhibit synchronization decoupling as
removing tuples from the TS is a synchronous operation. Tuple spaces have
been implemented for many languages and platforms [31].
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7.3 Data Center Managers

With the scale out of modern data centers, systems like Chubby [5] and
ZooKeeper [13] evolved in order to provide coordination and synchroniza-
tion for a large amount of machines. They store information in a hierarchical
name space (i.e., like a file system) and export an API similar to the ones
used for file manipulation. Zookeeper and Chubby are used as a multipur-
pose tool for various coordination tasks such as configuration management
and storage, rendezvous, group membership, leader election, locking and
barriers. Chubby is also starting to replace DNS as a name server internally
at Google. Both systems use replication to achieve high availability and a
form of Paxos [15] for consensus among all nodes.

7.4 Key–Value Stores

Key–value stores started to appear in order to support the massive scale of
todays Internet applications. The idea is to go away from using the complex
querying capabilities and costly retrieve operations of relational database
management systems (RDBMS) and use key–value stores where data can be
retrieved by simple primary key lookups. Most systems favor speed and
simplicity over strong guarantees such as ACID in traditional data stores.
Key–value store is a very general term for a wide range of systems with
different purposes: Distributed key–value stores [7, 9] usually implement a
form of distributed hash table (DHT). Their goal is to support massive scale
and be eventually-consistent. On the other hand, systems like Redis [30] try
to store all data in RAM on a single machine (although replication is sup-
ported using a master–slave pattern) with only optional support for persis-
tence. Key–value stores allow to store data in a schema-less way. What kind
of data is stored can vary: Redis for example is often referred to as a data
structure server since it can store strings, hashes, lists and sets — all types
that can also be stored in a programming language. Other, more document-
oriented systems like MongoDB [28] allow to store semi-structured data (i.e.,
JSON or XML). MongoDB or other searchable key–value stores [26] are also
able to perform lookups based on the values of an entry. However, they
usually do not have support for complexer operations such as joins in SQL.

7.5 Singularity Driver Manifests

Singularity is an operating system written in Sing# on top of the .NET CLR.
In Singularity, device driver manifests [21] are attached to the the respective
driver assembly. Manifests are written in XML and contain a description of
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hardware and software preconditions to run a driver. This design enables
Singularity to learn the requirements for starting a driver, or possible con-
flicts with other drivers, without executing the driver code first. Verification
can be done at compile time or run time.
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Chapter 8

Conclusion

In this thesis we introduced Octopus, a coordination service for Barrelfish.
Octopus is influenced by ideas in the distributed computing area. The
service allows for coordination and event delivery in a multikernel oper-
ating system such as Barrelfish. It encompasses characteristics of key–value
stores, publish–subscribe systems and data center lock managers. Octo-
pus can store information and its API allows clients to build synchroniza-
tion primitives. We give a reference implementation for locks, barriers and
semaphores. Octopus is integrated and implemented on top of the Barrelfish
operating system and uses existing mechanisms in Barrelfish such as the
SKB, THC and Flounder. Our performance measurements have shown that
we exhibit horizontal scaling for lookups based on keys. We investigated
the benefits and drawbacks of using the SKB and basing our work on the
embedded high-level CLP language in the SKB. While using a high-level
language we benefited from being able to rapidly prototype different im-
plementations and were able to rely on the expressiveness of a declarative,
dynamic language. Because the main drawbacks were mostly performance
related, we made some optimizations for lookups based on record values,
triggers or subscriptions and show that they help to improve the perfor-
mance.
As a case study, we used Octopus in Barrelfish to replace Chips and to
write Kaluga, a device manager that helps with booting the OS. Kaluga uses
Octopus to watch for changes in hardware and reacts appropriately to the
changes. We modified some areas of the PCI and ACPI code to be compati-
ble with Kaluga. By using Octopus, Kaluga is decoupled from the PCI and
ACPI implementation and only sees the relevant information in the form of
records. This allows to evolve all three services independently in the future.
We think the case study proved that Octopus is well suited for coordination
tasks in an operating system. It allowed us to write code that requires rela-
tively complex interaction and synchronization among processes with little
overhead, therefore speeding up the development process for Kaluga or the
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Chips replacement.

8.1 Future Work

While the current state of work is already usable and a useful contribution
to Barrelfish, there are still areas for further improvements. Capabilities are
an important data type used in various places in Barrelfish. Right now, we
have no solution to store capability references in Octopus. It would have
been nice to use iterators instead of the current get_names call. This was
not possible due to limitations in ECLiPSe. For performance, there is still
a lot of room for improvements by applying ideas from traditional key–
value stores. However, as long as we rely on the SKB as the underlying
implementation, there will always be a tradeoff between expressiveness and
performance. We currently have no access control for records. This makes it
hard to have a reliable system as every process can modify or delete records.
A possible way would be to use a designated record attribute to encode
access restrictions or use capabilities to restrict record manipulations. To
react to program failures, transient records (i.e., records that are removed
automatically once their creator does no longer exist), would be useful and
allow to build more reliable distributed services for Barrelfish. We were
not able to implement this yet as the current process management does not
allow to monitor dispatchers.

Octopus also opens a lot of possibilities for additions and new functional-
ity in Barrelfish: The ACPI, PCI as well as USB management code can be
adapted for hot plugging support. Kaluga should already be prepared to
catch these events and act appropriately. Device drivers can be modified to
react to changes in hardware by watching records. Octopus can work in a
dynamic environment: Programs can generate records and queries at run-
time. It may be worth it to explore how this can be exploited to reconfigure
Barrelfish at runtime instead of having to reboot. Distributed services in Bar-
relfish can make use of Octopus to solve problems such as leader election
or configuration management. The Prolog language would be a good fit to
extend the current implementation and write algorithms that reason about
the state of records — for example, to detect deadlocks by analyzing lock
records at run time.
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