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Abstract

As the gap between the speed of networks and processor cores
increases, the software alone will not be able to handle all incoming
data without additional assistance from the hardware. The network
interface controllers (NICs) evolve and add supporting features which
could help the system increase its scalability with respect to incoming
packets, provide Quality of Service (QoS) guarantees and reduce the
CPU load. However, modern operating systems are ill suited to both
efficiently exploit and effectively manage the hardware resources of
state-of-the-art NICs. The main problem is the layered architecture of
the network stack and the rigid interfaces.

This dissertation argues that in order to effectively use the diverse
and complex NIC hardware features, we need (i) a hardware agnostic
representation of the packet processing capabilities of the NICs, and
(ii) a flexible interface to share this information with different layers
of the network stack.

This work presents the Dataflow graph based model to capture both
the hardware capabilities for packet processing of the NIC and the state
of the network stack, in order to enable automated reasoning about
the NIC features in a hardware-agnostic way. It also describes the
implementation of the Dragonet network stack which uses the dataflow
model to support the diversity and complexity in the NICs.

Dragonet enables effective use of the available hardware features
in a portable way by using the dataflow model to share the packet pro-
cessing capabilities of a particular NIC configuration with the runtime
system, which can then automatically specialize the network stack
based on this information.

Furthermore, the dataflow model enables systematic exploration
of the hardware configuration space and allows reasoning about the
hardware capabilities in the context of application requirements. Thus,
allowing policy-based management of the NIC’s resources.

The dissertation shows the effectiveness of the dataflow model by
implementing several high-level policies for managing different hard-
ware resources on two separate NICs.



Kurzfassung

Mit der wachsenden Diskrepanz zwischen der Geschwindigkeit
des Netzwerks und der CPU-Leistung ist Software nicht mehr in der
Lage alle eingehenden Daten ohne jegliche Hilfe von der Hardware zu
bewältigen. Netzwerk Interface Controller (NIC) entwickeln sich da-
her ständig weiter und können mittlerweile den Systemen helfen, hö-
here Skalierbarkeit bezüglich eingehender Pakete zu erreichen, Quality-
of-Service (QoS) Garantien bereitzustellen oder die CPU-Last zu re-
duzieren. Modernen Betriebssystemen fehlt allerdings die Unterstüt-
zung um diese Erweiterungen moderner NICs effizient auszunutzen
und verwalten zu können. Das Hauptproblem in diesem Zusammen-
hang ist die Architektur des Netzwerkstapels in Schichten sowie zu
inflexible Schnittstellen.

Diese Dissertation argumentiert, dass für die effektive Nutzung
vielfältiger und komplexer NIC-Hardware sowohl eine Repräsentati-
on der Paketverarbeitung existieren muss, die unabhängig von der ver-
wendeten Hardware ist, als auch eine flexible Schnittstelle um diese
Information in allen Schichten des Netzwerkstapels verfügbar zu ma-
chen.

Diese Arbeit präsentiert ein auf einem Dataflow-Graph basierende
Modell, welches sowohl die Fähigkeiten der Hardware im Bezug auf
die Paketverarbeitung eines NIC als auch den Status des Netzwerksta-
pels darstellt. Dies erlaubt die automatische, hardware-unabhängige
Auswahl der verfügbaren Fähigkeiten der NIC-Hardware. Des Wei-
teren beschreibt die Arbeit die Implementierung des Dragonet Netz-
werkstapels, welcher das Dataflow-Modell benutzt um die Vielfalt und
Komplexität der NICs optimal zu unterstützen.

Dragonet erlaubt mit Hilfe des Dataflow-Modells, die Fähigkei-
ten der Hardware plattformunabhängig und effektiv einzusetzen um
die Paketverarbeitung zwischen der Laufzeitumgebung und des NIC
aufzuteilen. Die Laufzeitumgebung kann dann automatisch den Netz-
werkstapel aufgrund dieser Informationen spezialisieren.

Des Weiteren erlaubt das Dataflow-Modell die systematische Er-
schließung aller möglichen Hardware-Konfigurationen und erlaubt es
zu beurteilen, wie die verschiedenen Hardware-Fähigkeiten im Kon-
text von verschiedenen Anwendungen eingesetzt werden können.

Diese Dissertation zeigt die Effektivität des Dataflow-Modells durch
die Implementierung von mehreren abstrakten Strategien zur Verwal-
tung von unterschiedlichen Hardware-Ressourcen mit zwei unterschied-
lichen NICs.
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Chapter 1

Introduction

This dissertation takes a fresh look at the design of the host network stack
with the aim of effectively exploiting the increasing capabilities of Network
Interface Card (NIC) hardware and systematically handling diversity and
complexities associated with these hardware capabilities.

1.1 Motivation

Networks are getting faster. CPU cores are not. If computers are to handle
future bandwidth and latency requirements, they will need a combination of
parallelism across cores and specialized network interface hardware.

Software alone will not be sufficient to deal with the increased network
speed. Parallelism can help to process more data in time, but without spe-
cialized hardware, processing of incoming network packets before demulti-
plexing (and of outgoing ones after multiplexing) executes serially in soft-
ware, leading to basic scalability limits via Amdahl’s law [Rod85]. Worse,
multiplexing aside, the limits of multicore scaling [EBSA+12] will ulti-
mately make software protocol processing a bottleneck.

1
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Fortunately, modern network interface controllers are equipped with hard-
ware functionalities which can help. These devices are highly complex,
and feature a bewildering array of functions: multiple receive and transmit
queues, TCP offload, traffic shaping, filter rules, virtualization, etc. Most of
these aim at improving performance in some common enough cases: bal-
ancing packet processing load, improving QoS isolation, reducing CPU uti-
lization, minimizing latency, etc. We will discuss these hardware features in
further details in the next chapter (2.1).

Unfortunately, using these complex NIC hardware capabilities is difficult
due to the lack of support from the Operating System (OS). Host network
stacks in most modern operating systems are still based on the layering con-
cepts introduced in 1980’s [LJFK86] to simplify portability across different
NIC hardware and protocol stack implementations. Hence, most host net-
work stacks still have a rigid interface between the device layer and the
protocol processing layer hiding most of the NIC hardware capabilities. Ex-
cepting some ad-hoc features in Windows [Mic11], an OS protocol stack is
based on a simple 1980s NIC and does not cope well with today’s plethora
of feature sets and their programming interfaces. Indeed, Linux explicitly
avoids support for all but the simplest hardware protocol offload, for reasons
that make sense from the perspective of the kernel maintainers [The09], but
which do not hold in a broader perspective.

The lack of systematic support from the OS for advanced NIC features has
made the problem of effectively using them even harder by leaving the sup-
port for these to hardware vendors. Support for such functionality is isolated
in individual device drivers, resulting in a mess of non-standard configura-
tion tools, arbitrary resource policy hard-coded into drivers, and in some
cases completely replicated network protocol stacks.

Ideally, the OS should manage these resources, allocate them appropriately
among competing applications based on system-wide policy, and provid-
ing appropriate abstractions so that applications can benefit without being
rewritten for each new piece of hardware.

This dissertation rethinks the OS network stack design to manage and ben-
efit from increasingly complex and diverse NIC features.
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1.2 Thesis

This dissertation argues the following thesis:

A flexible interface and a hardware agnostic representation of
packet processing capabilities are needed to effectively use the
NIC hardware capabilities.

A dataflow graph-based model captures sufficient information
about the packet processing capabilities of hardware and the
network stack state to enable automated reasoning about the
NIC capabilities in a hardware-agnostic way.

A dataflow model-based interface enables sharing of fine-grained
information about packet processing among the network stack
layers which can be used for adapting the packet processing
based on the work done by other layers.

Furthermore, this approach provides systematic and automated
reasoning capabilities which enable policy-based NIC resource
management across different NICs in a portable way.

To prove the above thesis, a prototype network stack called Dragonet was
implemented with the following goals:

• The network stack should have a mechanism to support diversity and
complexity in NIC hardware.

• The network stack should adapt to maximize the benefits of the NIC
capabilities to the applications based on their requirements.

• The network stack should provide policy-based NIC resource man-
agement in a hardware-agnostic way.

1.3 Contribution

This dissertation makes the following contributions:
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Modeling Packet processing as a dataflow graph: This thesis presents
a dataflow model to capture the packet processing capabilities of NIC hard-
ware and the OS network stack. This model uses two simple abstractions
to represent the packet processing as a dataflow graph and an additional ab-
straction to capture capabilities of the NIC hardware. This thesis shows that
the dataflow model captures enough information which allows us to exploit
NIC hardware capabilities by enabling automated reasoning.

This thesis also explores the difficulties in exploring the NIC configuration
space and proposes optimizations to reduce the search space based on the
current network state by using a hardware oracle.

Policy-based resource allocation: This thesis proposes an approach to
separate the resource allocation policies from the implementation by formu-
lating the policies using a high-level abstraction of cost-function to evaluate
the resource allocation plan in a hardware-agnostic way. Using the cost-
function abstraction, we transform the resource allocation problem into a
search problem on the NIC configuration space.

Dataflow model-based interfaces: This thesis proposes using a dataflow
model-based interfaces to pass the information about packet processing ca-
pabilities between the resource management layer and the network stack.
This abstract model allows the network stack to adapt to the current NIC
hardware configuration without having to worry about NIC specific imple-
mentation details.

1.4 Dissertation Structure

This dissertation is structured in the following chapters:

Chapter 2 provides the background about NIC hardware and the OS network
stack and explores the difficulties in using NIC hardware features. Further,
it makes a case that the layered design of a host network stack with fixed
interfaces is not ideal for increasing diverse and complex NIC hardware and
changing application requirements.
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Chapter 3 introduces the approach of using dataflow models based on simple
abstractions to capture the packet processing capabilities of NIC hardware.
This chapter also explores the problems in exploring the NIC configura-
tion space and outlines a way to reduce the search space by using network
state. In addition, it introduces the dataflow model-based interfaces to share
the information about the protocol processing capabilities between different
layers in a hardware agnostic way.

Chapter 4 discusses how information provided by the Dragonet about hard-
ware capabilities can be used to specialize the network stack at deployment,
and to adapt the protocol processing during the runtime.

Chapter 5 shows how the Dragonet approach can separate queue manage-
ment policies from the implementation in a portable way across different
NICs by introducing a cost-function abstraction. Furthermore, it explains
the search approach for the NIC configuration space and the performance
optimizations implemented. It presents two different queue management
policies on two applications for two different NICs.

Chapter 6 describes a host bandwidth management use case and how Drag-
onet can help in using NIC hardware capabilities for rate control to meet the
application’s requirements.

Chapter 7 concludes the thesis and explores the potential for the future work.

1.5 Collaborative work

In addition to my advisor Prof. Dr. Timothy Roscoe, the work presented
in this dissertation is done in collaboration with other members and stu-
dents of the Systems group at ETH Zurich. The Dragonet network stack has
been built and evaluated in collaboration with Dr. Kornilios Kourtis, Antoine
Kaufmann, and Prof. Dr. Timothy Roscoe. Antoine Kaufmann lead the de-
velopment of the Dragonet runtime system in his master’s thesis [Kau14],
and Dr. Kornilios Kourtis lead the efforts in optimizing the configuration
space search [KSKR15].
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1.6 Related Publications

The work presented in this thesis is part of the Barrelfish OS research project,
the Dragonet network stack, and depends on and is supported by the work
of others. Some of the work this thesis depends on is published, and is listed
here for reference:

[KSKR15] Intelligent NIC Queue Management in the Dragonet Network Stack
Kornilios Kourtis, Pravin Shinde, Antoine Kaufmann, Timothy Roscoe.
In proceedings of the 3rd conference of Timely Results in Operating
Systems (TRIOS-2015)

[SKKR13] Modeling NICs with Unicorn. Pravin Shinde, Antoine Kaufmann,
Kornilios Kourtis, Timothy Roscoe. In proceedings of the 7th work-
shop on Programming Languages and Operating Systems (PLOS-
2013)

[SKRK13] We need to talk about NICs. Pravin Shinde, Antoine Kaufmann, Tim-
othy Roscoe, Stefan Kaestle. Accepted in the 14th USENIX confer-
ence on Hot topics in operating systems (HOTOS-2013)

[Kau14] Efficiently executing the Dragonet network stack. Antoine Kaufmann.
Master’s thesis, ETH Zurich, September 2014



Chapter 2

Background

In this chapter, we provide background and the driving forces behind the
increasing complexities in NIC hardware (2.1) as well as the current state
of the host network stacks (2.2). Then we discuss the layered design of
the host network stack and how this affects the efficient use of the NIC
hardware (2.3). We take a use case of programmable NICs with onboard
FPGA to show how network stack structure affects the potential benefits of
a programmable NIC (2.4).

2.1 The state of NIC hardware

The trend of using NIC hardware to help the CPU in dealing in increasing
network speeds is not new. Benefits of using NIC hardware for simple CRC
calculations have been observed in past [vEBBV95] As the network speeds
increased from 100Mbps to 1Gbps, hardware support for interrupt throt-
tling [ST93] was introduced to reduce to load on the CPU. Arsenic [PF01]
explored the benefits of using the NIC hardware for demultiplexing the
packets.

Early NICs also reduced CPU load by offloading IP checksum calculation

7



8 CHAPTER 2. BACKGROUND

and validation of packet lengths, protocol fields, etc. The value of this func-
tionality by itself is now debatable as CPUs are much faster, but it remains
as a prerequisite for further acceleration.

Starting from relatively simple TCP Segmentation Offload (TSO), vendors
have implemented increasingly complex TCP Offload Engines (TOEs), ex-
perimenting with different mixes of software and hardware functionality,
including the use of embedded processors [JCKL11] and intelligent coa-
lescing of interrupts based on packet properties [WWL05]. The problem of
handing off connections between OS and offload stacks has also been inves-
tigated [KR06]. TOEs can improve web server capacity by an order of mag-
nitude [FBB+05], but they remain controversial due to complexity [The09]
and limits to applicability [Mog03], an issue we return to in Section 2.2.

Multicore processors have also led to NIC features to aid scalability: mul-
tiple hardware queues for send and receive, Receive-Side Scaling (RSS),
and configurable per-queue interrupt routing. The value of such features
has been shown in many scenarios, for example, Routebricks provides a de-
tailed analysis for software routers [DEA+09]. Affinity-accept [PSZM12]
uses multiple queues and receive-side filters to extend the accept system
call to favor the connections on local queue to improve the scalability of the
accept call at the cost of minor changes to POSIX socket semantics.

Networks are now so fast that the memory system can become the bottle-
neck. NIC hardware is helping with this bottleneck by introducing tech-
niques (e.g., Direct Cache Access (DCA) [HIT05] and Data Direct I/O
(DDIO) [Int12]) which can deliver incoming packets to the data cache,
bypassing RAM and thereby reducing memory bandwidth and latency, al-
though performance is highly sensitive to correct configuration [KHM09].

At the same time, the CPU-intensive nature of cryptographic operations has
led to some NICs integrating SSL and other crypto accelerators onto the data
path [BK03]. The high performance network communication mechanisms
like RDMA [RDM] and iSCSI [Net04] are designed assuming hardware
acceleration, and supercomputers employ NICs with hardware support for
the Message Passing Interface (MPI) [Mes09].

The rise of virtualization has also led to NIC support for virtual devices
that can be directly mapped into virtual machines [PCI10, RS07]. Plentiful
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hardware queues help to provide quality of service and isolation. Modern
virtualization-aware NICs [Sol10b] also provide onboard IOMMUs for ad-
dress translation and protection on DMA transfers, per-flow queuing, traffic
shaping on transmit, and even built-in switching functionality [STJP08].

Given this complexity, it is unsurprising that some NICs have fully pro-
grammable processors onboard [Net08, Cav13]. Unfortunately, the com-
plexity of programming these NICs have limited their use to prototyping
complex offloading engines [Ang01], self-virtualizing interfaces [RS07] and
applications like intrusion detection systems [BSR+06].

Also, NICs with configurable hardware such as FPGAs are gaining increas-
ing interest in both research [Netb] and industry [Sol12]. The initial tar-
get for these NICs were the niche applications such as algorithmic trad-
ing [LGM+12], and these platforms are also used to evaluate the implica-
tions of offloading full applications like key-value stores on the onboard
FPGA [CLW+13a] simple setup of UDP and the binary protocol of mem-
cached. The implementation of scalable TCP stack on the FPGA [SAB+15]
indicates the potential for supporting complex services on these NICs in a
scalable way. The recent research is further exploring the benefits of using
this hardware platform to implement the complex and latency sensitive ser-
vices like distributed consensus [ISAV16]. The introduction of these hard-
ware platforms into the data centers for complex and latency sensitive data
center applications like web search [PCC+14] also indicates the potential
benefits of capabilities of these programmable NIC platforms.

The network switch hardware is also becoming increasingly programmable
to support Software Defined Networking (SDN) [MAB+08]. The useful-
ness of the partially programmable networking hardware is shown by the
ServerSwitch [LGL+11], which uses hardware present in the network switches
to implement and evaluate the data center networking designs.

In summary, hardware vendors are incorporating ever-more sophisticated
capabilities into NIC hardware, and this trend is growing. Unfortunately,
in most cases the benefits of these evolving hardware capabilities are not
automatic, and careful system-specific configuration may be needed to fully
realize them.
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2.1.1 Lack of standards and abstractions

The changing hardware landscape typically needs new approaches and ab-
stractions to effectively benefit from them. Graphics Processing Unit (GPU)
hardware evolution has benefited from the SIMT (Single Instruction Multi-
ple Threads) model and the OpenCL framework [SGS10] to simplify the
use of the GPU hardware capabilities in a portable way.

Similarly, the Message Passing Interface (MPI) standard [Mes09] has helped
the evolution of RDMA capable hardware, while simplifying the portable
use of these hardware capabilities. The Portals network programming in-
terface [San14] is extending these interfaces further to facilitate the future
evolution of the hardware.

The recent advent of Software Defined Networking (SDN) [MAB+08], which
aims to open the capabilities of network switches is benefiting from the
OpenFlow standard [spe12] to facilitate the development of hardware capa-
bilities.

Unfortunately, Ethernet NIC hardware does not have any viable standard nor
the interfaces to guide the evolution of NIC hardware capabilities. This lack
of standards and interfaces has lead to the increasing diversity and complex-
ity of the NIC hardware while applications are not able to use these hardware
capabilities in a portable way.

2.2 The state of OS network support

Modern OSes do not provide a good framework for NIC accelerators, and
TCP Offload is a good example which illustrates the wider issues surround-
ing OS support for new NIC functionality. The Linux kernel network stack
has limited support for TCP Offload Engines (TOEs) in favor of reducing the
complexity in the network stack [The09], and hence many of these features
are pushed down to the device drivers with non-standard interfaces to con-
trol them [xAp13]. Similar arguments are surveyed previously [Mog03],
and we discuss few of these arguments here.
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Deployment issues: These arguments can take many forms: Intelligent
NICs use proprietary firmware and hence the deployment is dependent on
the hardware vendor for maintaining the compatibility with the changes in
the OS and fixing security bugs. Consequently, the OS is not granted the
visibility into, and control over hardware, and hence OS can’t manage these
resources properly.

Performance gain is short term: The argument goes that cores will always
get fast enough to render any hardware feature irrelevant for performance.
This argument does not hold anymore in the current era of multicore CPUs
where individual cores are not getting faster [Mim10]. Even the benefits
from multicore CPUs are limited as the packet processing involves serial
operations like demultiplexing incoming packets and any attempt to move
this into software results in a serialization point where Amdahl’s law fun-
damentally limits scalability. Moreover, with processor architecture moving
towards large sets of specialized processing elements [EBSA+12], we can
view NIC hardware as one subset of this trend. We need to understand how
to write OS software for this kind of system.

Benefits of hardware features are unclear: Mogul [Mog03] observes
The hardware interfaces were often poorly designed for performance un-
der many common workloads. For example, even though RDMA capable
hardware can be useful in some use cases, the OS overhead of descriptor
management can frequently outweigh the gain from the hardware in many
other cases [FA09]. As hardware features rarely improve performance in all
cases and need to be used judiciously. One can even build models to predict
the value of protocol offload for different applications [SC03].

The hardware lacks functionality: Modern OS protocol stacks are feature-
rich, with sophisticated filtering and scheduling, and uniform configuration
interfaces. In contrast, NICs which try to assume such functions may not
support the full capabilities of the OS stack, can have hardware-specific
resource limits (e.g., on number of flows), can suffer remote resource ex-
haustion attacks, and often require special tools for configuration.

Integration is difficult: Supporting a complex piece of NIC hardware in a
modern OS requires large engineering efforts [The09]. In addition, having
some flows or state handled by hardware and some by the OS eliminates the
global system view, making it hard to manage resources.
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Above reasons have lead to poor OS support for complex NIC hardware
capabilities. The limited support for incorporating the complex NIC func-
tionalities into the OS has pushed NIC vendors towards using alternate ap-
proaches. NIC vendors can encode policy in the driver and hide it from the
OS. For example, Intel i82599 10GbE Linux driver monitors TCP connec-
tions and try to dedicate a queue to a connection by sampling the outgoing
packets to determine active flows (default sampling rate: 20 packets). The
OS has no control over this policy and cannot connect it with other resource
allocation decisions. The other approach for NIC vendors is to expose the
functionality to specially-written applications using a non-standard control
interface [Int09] or, in some cases, a new, separate network stack [Sol10a].
This works in certain application areas (Finance, HPC), but is not a long-
term solution.

There is a tread-off between hiding the hardware complexity for portability
and simplicity, and exposing hardware capabilities for performance and effi-
ciency. So far, the OS network stack design was inclined towards simplicity
and portability, but as the NIC hardware is becoming increasingly capable
we need to rethink

2.2.1 Motivation to rethink network stack design

There is a tread-off between hiding the hardware complexity for portabil-
ity and simplicity, and exposing hardware capabilities for performance and
efficiency. In section 2.2, we have seen that the OS network stack design
is inclined towards simplicity and portability. But, as the NIC hardware is
becoming increasingly capable we need to rethink the network stack archi-
tecture with a motivation of exploiting the hardware capabilities effectively
in a hardware-agnostic way to deliver good performance to the application.

The trends in virtualization, multicore processors and NIC hardware fea-
tures are showing that NIC hardware features are here to stay, and the com-
plexity will keep increasing. The applications can benefit from these hard-
ware features if they are properly used. For example, virtualization sup-
port on NICs [DYL+10] could deliver benefits to a single OS via reduced
CPU usage and performance isolation, as with other virtualization support
[BBM+12, PLZ+14, BPK+14]. The benefits for hardware queues and fil-
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tering capabilities could be used for scaling packet processing with cores
[PSZM12, JWJ+14, HMCR12]. Unfortunately, most of these solutions are
NIC-specific, making it difficult to develop applications which can exploit
NIC capabilities across different NICs. This portability problem is partially
due to the OS not managing the NIC hardware capabilities, leaving it to the
applications and NIC vendors to work around the OS.

2.2.2 NIC capabilities as first class OS resources

Typically, the OS would consider only few network related resources for
resource management. A typical network resource includes a network end-
point address (e.g. IP address, port numbers) which are needed for sending
or receiving packets. These addresses are typically managed by the network
stack to control the access to packet sending and receiving capability. Also,
the network bandwidth available to a host can be considered as another net-
work resource which can be managed by the OS.

The NIC hardware is evolving to provide features like offloading, packet
filtering, multiple send and receive queues, onboard cores or FPGAs, and
these features can help to reduce the CPU and memory load, provide QoS
and reduce the latencies. As these capabilities in the NIC can affect the
application performance and overall resource utilization, the OS should be
able to manage them. These hardware capabilities should be treated as first
class citizens for the OS-level resource management.

We revisit the assumptions in the current network stack designs in the light
of changing hardware trend of increasing NIC complexity and diversity. In
next section, we discuss the motivation and reasoning for the layered de-
sign of host network stacks, and how that design is limiting the benefits of
the advanced hardware capabilities in modern NICs and treating these NIC
capabilities as first class resources.
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2.3 Layers in traditional network stacks

The evolution of the layered network stack can be traced back to the 1980’s
[LJFK86] era of simple NICs and single-core CPUs. In that period, one of
the main motivation for a network stack design was portability. These porta-
bility concerns lead to layering the network stack into the device-driver, the
protocol processing layer, and the socket layer. These layers facilitated the
portability of applications across different OSes by using the application-
level POSIX interface [POS93], and the portability of the OS on different
NIC hardware by using the device-level interface. Also, this layering struc-
ture mapped well on ISO/OSI standard [Zim80].

The advantages of the layered architecture of network stacks are stable in-
terfaces and separation of concerns between different parts of the network
stack. This separation and stable interfaces allow each part to evolve inde-
pendently. For example, moving from 1Gbps to 10Gbps NIC hardware is
possible without modifying the protocol layer or the applications. Similarly,
adding new optimizations in the TCP protocol can be done without having
to worry about the NIC hardware and the applications using it.

The layered architecture of the network stack has served well in shielding
the applications and the OS from changes in the NIC hardware while allow-
ing them to evolve over the time, and still remains at the core of the network
stack implementations in modern operating systems.

2.3.1 Limitations of layered architecture in network stack

Part of the difficulty in exposing new hardware features to the OS comes
from the lack of the flexible interface between the device driver and the
OS. In addition to the inflexible interface, most protocol processing layers
make implicit assumptions about separation of responsibilities between the
device driver and the OS. Unfortunately, assumptions about responsibilities
are so deeply embedded in the implementation of the protocol stack and the
resource management policies that it is hard to adapt them for new hardware
features.

For example, there are no standard interfaces to expose partial TCP offload
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to the protocol processing layer and hence these features are implemented
by many NICs using vendor-specific interfaces [Mog03]. But, this does not
work well without modifying the protocol layer and resource management
layer to incorporate the knowledge about the semantics and implications of
using the hardware capabilities [Ang01].

It is not the case that the interface between the device driver and protocol
processing is not evolving at all. For example, the device driver interface
in the Linux network stack has evolved to support hardware features like
receive side scaling (RSS), per core receive queues and per core interrupts
to achieve better scalability in packet processing [HdB13]. However, these
changes are happening slowly and are not fast enough to keep up with di-
versity and complexity of NIC hardware changes.

The diversity in semantics of the NIC hardware features is another source
of complexity. Not all NICs provide the same functionality in hardware nor
are the interfaces and semantics of these features similar. Also due to a lack
of proper standards and global agreements it is unlikely that the device-OS
interface can be easily changed to incorporate these features. The OS has
an option to have separate interfaces for each NIC and hardware feature,
leading to increased complexity, or ignoring the hardware features in favor
of simplicity.

As a result of this diversity and complexity, Linux kernel network stack has a
limited support for complex NIC features like TCP Offload Engines(TOEs)
[The09], and Windows has used an approach of pushing the complexity to
user space by adding TOE-specific interface [Mic11]. It is not clear if this
approach is scalable with increasing hardware features, and also it is not
clear if ignoring these features is advisable [Mog03].

Using NIC capabilities from applications

As the interface between applications and the network stack is fixed [POS93],
it is difficult for applications to benefit from the new hardware features with-
out proper support from the underlying OS. Applications can cheat by either
bypassing the network stack altogether or by creating a non-standard com-
munication channel with the device to use it. Both of these approaches
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make applications heavily dependent on the particular hardware features at
the cost of portability, and lose the benefits of using the OS for resource
management. We need a flexible network stack design which can simplify
utilizing the NIC hardware features, without forcing hardware-specific in-
terfaces onto the application.

2.3.2 Background on flexible network stack design

There have been attempts to avoid the limitations of layering by re-structuring
the host network stack to improve the performance. U-Net [vEBBV95] was
motivated to simplify implementation of new protocols and improve the per-
formance by limiting the kernel to perform demultiplexing and by pushing
the protocol processing into the applications. Arsenic [PF01] used hard-
ware support from NIC to expose the virtual interfaces to applications, and
hence collapsing the layers in the traditional layered architecture. The ex-
okernel [EKO95] approach is similar and it exposes the low-level NIC hard-
ware interface directly to the applications to further explores potential for
application-specific optimizations in the protocol stack.

Similarly, recent research in decoupling the control plane and the control
plane at the OS level [PLZ+14, BPK+14] is revisiting layers and interfaces
in the network stack in the context of increasing support for virtualization
in NIC hardware. This approach separates the safety critical control path
from the performance critical data path and provides a direct data path to
the applications by exposing the virtualized NIC (VNIC) interface supported
by the NIC hardware. The FlexNIC project [KPS+16] provides a flexible
DMA interface to a network stack and applications to offload some of the
application-specific packet processing onto the programmable NIC hard-
ware with reconfigurable match table (RMT) [BGK+13] capabilities.

This related work shows the benefits of having flexibility in the network
stack for exploiting the NIC hardware capabilities efficiently. Next, we
present a case study of difficulties involved in using hardware capabilities in
the NIC in the layered network stack architecture.
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2.4 Case Study: Programmable NICs

In this section, we take a look at a NIC with an onboard FPGA as a represen-
tative of a NIC with complex hardware capabilities. We evaluate the benefits
of using such hardware capabilities and the difficulties of using them.

2.4.1 Background

As networks are becoming faster, NIC vendors are exploring ways to reduce
the load on the CPU by providing the possibility of full programmability
on the NIC itself. As a result, nowadays we see NIC hardware with an
onboard core or FPGA commercially available for high-end servers [Sol13,
Int03, Net08, Cav13]. Currently, these products are targeting specialized use
cases like line-rate deep packet inspection [BSR+06], and high-frequency
trading [LGM+12], where the whole system and the application are custom-
designed around the capabilities of networking hardware.

This trend of providing general purpose processing on NIC hardware is cur-
rently going in two directions.

The first direction is NICs with onboard processors, which have a small
general-purpose CPU directly on the NIC hardware. This processor has di-
rect access to the incoming and outgoing packets, and can perform inline
packet processing. An example of such hardware is the Intel IXP [Int03].
This hardware has been explored for use cases like intrusion detection sys-
tem [BSR+06].

The second direction is NICs with Onboard FPGAs. This FPGA has access
to the packet flow going through the NIC. The onboard FPGA can be pro-
grammed to perform different functions based on the current requirements.
Examples of this approach are the NetFPGA [Netb] project and Solarflare
ApplicationOnload Engine (AOE) [Sol13] NIC.
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2.4.2 Motivation for programmable NICs

Programmable NICs provide general purpose processing capabilities di-
rectly on the NIC. These processing capabilities can be used for functions
like packet filtering, classification, aggregation, compression/decompres-
sion, encryption/decryption, packet modifications or application-specific pro-
cessing.

Programmable NICs can be beneficial in many ways. For example, these
NICs can improve the overall latencies of the key-value store by offloading
the full application onto the programmable NIC [CLW+13b]. The NIC can
directly generate and send a reply based on the application logic without
having to communicate with CPU, and hence, can gain the advantage of
reduced latency.

Onboard processing capabilities also provide a way to process data on the
NIC itself. Directly processing packets on the NIC can reduce the load
on the CPU by sparing it from doing this work. For high-speed data pro-
cessing systems, the ability to perform extra processing on incoming data
without adding significant delays or additional data movements can be an
advantage. Recent research demonstrates the benefits of offloading com-
plex services like distributed consensus [ISAV16] on network-attached pro-
grammable FPGAs. This hardware is also finding its way into data centers
as accelerators for the latency-sensitive applications like a web search en-
gine [PCC+14].

2.4.3 Evaluation

In this section, we describe our experience in evaluating a programmable
NIC in accelerating the application logic. Our goal for this evaluation is
to understand whether the complex NIC hardware can provide benefits to
applications by using programmable NICs as a representative.

As programmable NICs can be used in many ways, we focus on utilizing
it for reducing the load on the CPU by performing application-specific data
processing on the NIC. This reduced load on the CPU should translate into
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improvement in application performance. We measure this improvement in
application performance to evaluate the benefit of the programmable NIC.

Our experiment platform: applicationOnload Engine (AOE)

In our experiments, we use Solarflare ApplicationOnload Engine (AOE)
[Sol13], which provides the onboard Altera Stratix V GX A5 FPGA. This
NIC has the capability of running custom application logic on the FPGA as
a module which will have direct access to incoming and outgoing packets.
The application module can be programmed to take actions on the packets
based on their content. In addition, this platform provide services and in-
frastructure to facilitate using existing functionalities of the NIC. It includes
the Solarflare Board Services which provides an interface allowing applica-
tion modules to access the incoming and outgoing packets at various parts of
the processing. This interface allows the application logic to use the existing
packet processing functionalities of the NIC without having to re-implement
them from scratch.

The AOE platform differs from the NetFPGA platform which is designed
to provide community-based research infrastructure for hardware platform
with programmable capabilities in form of onboard FPGA [LMW+07, ZACM14].
In addition, the NetFPGA platform provides many building blocks, which
are geared towards flexibility and ease of understanding. We decided to use
the AOE platform for few engineering reasons, including the availability of
commodity building blocks tailored for performance, and this platform is
designed for a specific configuration of offloading application logic which
was suitable for us. The AOE platform also provides the infrastructure in
the form of Firmware Development Kit (FDK) to streamline application de-
velopment.

Even with the infrastructure support available with AOE platform, develop-
ing an application for this FPGA is a complex task and involves understand-
ing many platform-specific components. For example, developer needs to
write a Verilog code, needs to understand how to use the Qsys interfaces to
communicate with other modules, understand the Solarflare Hardware Ab-
straction Layer (HAL) and board services to use the existing functionalities
provided by the platform. In addition, the developer also need understand
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AOE driver interface and how this platform communicates with the host to
use it correctly.

Selecting a workload

We are targeting a typical workload of a key-value store or a business rule
engine which is receiving the requests over the network and is processing
them to generate the corresponding response.

In these types of systems, there is a certain amount of processing needed for
each request/event which typically arrives in the form of a network packet.
In the case of a key-value store like memcached [Dan13], this processing
will involve parsing a packet to get a key and hashing it. In the case of event
processing system like Drools [Red], this processing will involve applying
certain filters on the packets to classify the event.

For our evaluation, we do not aim to remove the CPU from request/event
processing by offloading the entire application onto the NIC. Instead, we fo-
cus on accelerating the application by offloading a part of the request/event
processing on the NIC to reduce the load on the CPU. The reasoning behind
not offloading the whole processing on NIC is that such processing can be
arbitrarily complex, and typically will need access to state which is difficult
to maintain on resource-constrained programmable NICs.

Another factor to be taken into account when offloading the application pro-
cessing on NICs is the complexity of programming the NIC environment.
Due to various resource constraints and specificity of the programmable
hardware used in the NIC, programming them do perform a complex request
processing or event handling involves can involve lot of engineering efforts.
In addition, general-purpose CPUs can be much more efficient for complex
code-paths due to their super scalar architecture, large caches and hardware
optimization like branch predictions. Hence focusing on offloading only
the performance-critical parts of the application logic on the programmable
NICs, and using general-purpose CPUs for rest of the processing can pro-
vide better tread-off between the performance and engineering efforts.

We have used following guidelines to split the work between the CPU and a
programmable NIC in our benchmarks.
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• Move the parsing of a network packet on the programmable NIC to
fetch only those parts which are of interest to the application.

• Move trivial processing of the incoming data to the programmable
NIC, which can be done with minimal application state.

The rest of the processing is left to the CPU, which can use the partially
processed data to avoid parsing the packet data again.

As an example, the memcached workload can be helped by offloading the
key hashing computation to a programmable NIC. A programmable NIC can
parse incoming requests, fetch the key and hash it with a minimal state from
the application. This can reduce the load on the CPU running the application
as it can directly use the hash calculated by the NIC.

Another example workload is rule-matching engine used by an event pro-
cessing system like Drools [Red]. In such system, a rule-engine is used
to process the content of incoming events by performing a large number
of string comparisons to find the set of rules which are satisfied by the in-
coming event. These events typically arrive over the network, and a pro-
grammable NIC can be used to decode the events and to perform the string
comparisons on these events to reduce the work of the CPU. As the set of
rules are fairly static in these systems, string comparisons needed can be
worked out by analyzing the set of rules. These string comparisons needed
for the rules can be offloaded into the programmable NIC as the applica-
tion state, and we can update these comparisons in the programmable NIC
whenever the rules change. We emulate this workload in our evaluations.

Micro-benchmark details

We have designed our micro-benchmark with a goal of mimicking a typical
event processing server application with request-response communication,
as it provides opportunities to benefit from offloading part of the processing
on NIC hardware. Our micro-benchmark can be considered as open-ended
re-implementation of the event processing server as we do not fully emulate
the behavior of the event processing server.

We have used a network benchmarking tool called netperf [netc] which has
a support for benchmarking the request/response behavior. We have used
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the UDP protocol for all of our benchmarking to avoid the complexities re-
lated to the TCP protocol. Our desired behavior is partially provided by the
UDP_RR test of the netperf benchmark, which implements UDP based re-
quest/response micro-benchmark. It also allows configuring the request/re-
sponses sizes and sending a batch of requests before waiting without wait-
ing for the response. The UDP_RR test does perform any processing on
the content of the received messages in the default behavior. We modified
this default behavior to perform processing on the content of the incoming
messages. Our processing emulates behavior of the rule matching engines
commonly present in the business rule engines. Our rule matching emu-
lation uses specific parts of the packet to find a rule that is satisfied by the
packet content by performing a string comparison operation. The number of
string comparisons typically increase based on the number and complexities
of these rules. We have tried to mimic this behavior by configuring netperf
to perform a configured number of string comparisons on the contents of
each packet.

Our goal was to saturate the server CPU, so we used a workload of 64-byte
requests and 8-byte response, and configured the client to have batch of
10000 requests in flight. This load was high enough that it always kept the
server CPU utilization to 100%, even though the network bandwidth used
in our benchmark was not very high. We used the number of completed
transactions per second by the server (shown as Transactions/Sec
(TPS) in the graphs) as a way to measure the performance of the server,
and we use the standard deviation in the TPS as error bars in our graphs pre-
sented in this section. We have measured the performance with and without
FPGA processing for varied the number of string comparisons (shown as
Comparisons in the graphs).

The FPGA application details

To show the benefits of using programmable NICs for computation, we de-
veloped an application for the onboard FPGA on a Solarflare NIC.

This FPGA application parses the incoming traffic to separate the UDP traf-
fic coming for the specific port (used by our server), and then further pro-
cesses it by extracting the key, which is then matched with pre-configured
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keys to figure out which one matches. The result of the match is written into
the packet at fixed offset which the server application running on the CPU
can directly use, without having to do the whole key matching again.

This way, all computations related to parsing and matching the key are of-
floaded to the NIC. The server application running on the main CPU then
just fetches the answer computed by the NIC, and then can use it to continue
further processing.

Due to our design choice of partial application offload, the data path in our
setup includes processing on both FPGA and the CPU for each packet. This
design choice also implies that our transaction rates are much lower than
a system which is fully offloaded onto the FPGA. On the other hand, our
setup has advantage of ease of engineering and deployment as most of the
application is developed and deployed on the CPU, and only small part of
the application logic needs to be offloaded onto the FPGA.

Limitations of our FPGA offloading implementation: Due to the diffi-
culties in programming the FPGA, the implementation we used for offload-
ing the processing to the FPGA is quite straightforward. It can only match
pre-configured keys, and it uses part of the packet to store the results of
the computation instead of providing the results separately (or as part of the
packet descriptor).

Evaluation: Correlation of workload and transaction rate

This experiment is designed to show the impact of increasing computational
workload on server performance. We increase the amount of work our server
needs to do by increasing the number of keys it should match for each in-
coming packet. This increased key matching simulates the workload of a
business rule engine by increasing the number of business rules, where each
new rule will typically lead to additional key matching for each incoming
packet.

We are not using any FPGA-based offloading for this workload, and we
have pinned the server application on a single CPU core. The goal here is
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to see how the server application performance is impacted when the amount
of work per packet increases.
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Figure 2.1: Impact of increasing CPU work on transaction rate for traditional kernel
space and user space network stack

The results of this experiment are presented in Fig. 2.1. This graph shows
the impact of increasing the amount of work by increasing the number of
keys compared by the server for each incoming packet. We have used Trans-
actions per second(TPS) as a unit of performance here.

This result shows that for a traditional kernel space network stack the trans-
action rate drops from 240.30K TPS to 42.91K TPS when increasing the
number of key comparisons from 0 to 128 keys. This result shows that the
key comparisons used in this benchmark are indeed CPU intensive, and has
measurable impact on the performance of the server.
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Implications of User space networking To quantify the impact of the
kernel space network stack and implied context switching, we have used a
user space networking implementation called onload [SC08] supported by
this hardware. This user space network stack solution avoids context switch-
ing in the kernel by mapping a pair of hardware send and receive queues in
the user space, and using them to directly send and receive packets.

Fig. 2.1 shows show kernel space and user space network stacks differ in
their performance. The user space network stack performs better when the
computational load is small (zero comparisons), and the system is process-
ing more packets. The user space networking reaches 416K TPS whereas
kernel space networking reaches only 240K TPS. The user space network
stack benefits by avoiding system calls related to sending and receiving
packets, and hence can do more relevant work leading to higher transaction
rate.

When the number of key comparisons is high, and the CPU is responsible
for this work, the advantage of user space networking is not significant as
most of the CPU time is going into key comparisons.

Evaluation: Performance improvements with FPGA

In this benchmark, we quantify the benefits which can be achieved by of-
floading compute-intensive work to the programmable NIC. We compare
the performance of offloading the work to the FPGA (marked as Using
FPGA) with letting the CPU do the work (marked as Without FPGA). We
have picked the workload of 64 string comparisons for this experiment as it
showed a significant impact on transaction rate in the previous experiment
(Fig. 2.1).

Fig. 2.2 presents the results of this experiment. It shows how a kernel space
and a user space network stack perform with and without using the NIC
offloading facilities.

The results show that whenever the FPGA is used for performing the string
comparisons, the performance of the server improves, compared with do-
ing this work in the CPU. For example, the performance of a kernel space
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Figure 2.2: Performance improvement with FPGA for 64 string comparisons

network stack improves from 74K transactions/sec to 255K transactions/sec
when using the FPGA.

The benefits are even higher for the user space network stack when using
FPGAs and hence the transaction rate increases from 88K to 379K. User
space networking can provide additional benefits by avoiding the system
call overhead in sending and receiving the data over network. The kernel
space network stack reaches a transaction rate of 225K when using FPGAs
for 64 key comparisons, whereas the user space network stack outperforms
it by reaching the transaction rate of 379K transactions/sec.

The performance of the server for 64 key comparisons with using the FPGA
(225K TPS) is similar to the performance of the server for zero key compar-
isons (240K TPS) without FPGA from the previous graph (Fig. 2.1). This
observation indicates that the system’s performance is bound by the number
of packets it can receive and send with the NIC and not on key comparisons.
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Evaluation: Impact of having the FPGA on the data path

Here, we present an experiment to quantify a negative impact of having
an additional processing unit on the NIC. We measure this negative im-
pact by letting the FPGA implementation on the NIC perform the work of
key-comparisons, but the server implementation ignores the work and does
the comparisons on the main CPU anyway. This setup leads to duplicated
work, once on the NIC FPGA and once on the server CPU. This configu-
ration allows us to measure the degradation of performance caused by the
duplication of work, and we present this additional work as the worst-case
overhead of having an active NIC FPGA in the packet processing path.
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Figure 2.3: Impact of FPGA processing (FPGA-64-CMP) and no FPGA processing
(No FPGA) on application performance

Figure 2.3 shows the results of this experiment. In the graph, No FPGA
represents a run where the NIC FPGA is not doing any work on the packets,
and FPGA-64-CMP represents the configuration where the driver is per-
forming key-comparisons which are then repeated by the CPU. This con-
figuration makes sure that the CPU is doing the same amount of work in
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both cases, and FPGA-64-CMP configuration is doing additional work in
the NIC FPGA. The results show that the transaction rate reported in these
two settings is similar for both the kernel space network stack and the user
space network stack. This result indicates that doing extra work of key
comparisons in the NIC FPGA does not have any observable effect on the
transaction rate reached by the server.

2.4.4 Observations about using programmable NIC

These experiments show that offloading part of the application processing
on a programmable NIC can lead to performance improvements by freeing
the CPU for doing more application-specific or other work.

These benefits come with some limitations. Currently, the application has
to be written for the specific capabilities of a particular programmable NIC.
This approach pushes all the hardware related complexities in the applica-
tion development, and makes the application non-portable. Also, applica-
tion developers need to think about which processing should be offloaded to
the NIC, and when.

The interfaces used for communication between the application and the NIC
are vendor-specific and typically OS will not be aware of them. Such use of
vendor-specific interfaces implies that the OS will not be able to provide any
resource management, pushing the responsibility of sharing the resources to
the application as well. A typical deployment will involve a single applica-
tion owning the NIC hardware and bypassing the OS completely to utilize
such a programmable NIC. Vendors tend to provide their own mechanisms
to share the NIC hardware between multiple applications, or such sharing is
not supported at all.

Most of the problems listed above stem from the inflexible interface be-
tween the NIC driver and the OS, and lack of mechanisms to inform the
OS about hardware capabilities in a more systematic way. Hardware ven-
dors are forced to bypass the OS to provide their services to applications
using their custom tools, and in process locking the applications into their
proprietary infrastructure.
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2.5 Discussion

In this chapter, we made a case for how layered structure and fixed interfaces
limit the ability of a network stack to adapt based on changing application
requirements and changing hardware. We have presented a case study us-
ing programmable NICs to show the potential advantages and difficulties in
using programmable NIC hardware.

A layered architecture and fixed interfaces used in a typical network stack
implementation is designed for the portability, and it limits the visibility
of the full functionalities in the other layers. This limited visibility in the
capabilities of other layers has an implication in using these capabilities
effectively. In the case of the host network stack, the increasingly diverse
capabilities in the NIC hardware are behind the device-driver interface, and
due to the limited visibility, a host network stack and the OS can not reason
about these capabilities, or manage them efficiently.

We believe that a layered network stack structure with fixed interfaces is not
suitable to adapt with hardware capabilities and application requirements.
We need to provide an adaptable division of responsibilities and a flexible
interface to allow such adaptation based current hardware capabilities and
application requirements.

We need a hardware-agnostic way to capture and share enough information
about the NIC hardware capabilities and the current network state. With
access to information about capabilities of the hardware, we can develop a
network stack which can adapt itself to exploit hardware capabilities based
on application requirements.

In the remainder of the thesis, we present a network stack aimed to tackle
these challenges. We present the Dragonet network stack which provides a
way to capture the capabilities of the NIC hardware and the network state,
and a way to analyze them to provide a networking solution optimized for
current application requirements.



30 CHAPTER 2. BACKGROUND



Chapter 3

Dragonet

3.1 Introduction

Modern host network stacks are evolved from an era when NICs were simple
and computers had a single CPU. As a result, their primary design goal
was to provide an efficient and portable software implementation of network
protocols across different NIC hardware. This lead to the separation of the
hardware dependent components in the device driver, and the use of simple
and minimal interface to send and receive packets from the host network
stack. However, changes in hardware trends force us to rethink the design
of the host network stack.

Today’s hardware is fundamentally different in two significant ways. First,
it exposes a high degree of parallelism to the software. Multi- and many-
core machines are an important aspect of this trend, yet not the only one.
Modern NICs offer a large number of hardware queues and filters which
can be used to distribute network processing on multiple cores to achieve
better performance.

Second, in an attempt to address power efficiency challenges, current hard-
ware is increasingly specialized. Specifically in networking this manifests

31
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as the rich and diverse features of protocol offload functions provided by
modern NICs, ranging from checksum and segmentation offload to full pro-
tocol offload.

Since the individual CPU speed is not increasing [Mim10], exploiting spe-
cialized hardware might be the only way to support increasing network
speeds. Hardware offload functions, however, are not always beneficial
[Mog03]. Hence, the network stack should not only allow the use of NIC
hardware features, but also allow for reasoning about their benefits.

Overall, in addition to implementing network protocols, we identify NIC
resource management as a second major concern for network stacks. In co-
ordination with the rest of the OS, a network stack needs to reason about, ef-
ficiently manage, and correctly use hardware resources such as NIC queues,
offload functions, and cores.

Unfortunately, efficiently using the NIC hardware features is not trivial due
to the complexity of the hardware and their interactions with other hardware
features. The network stack needs to have knowledge of the semantics of
these complex hardware features and the implications of using them. Also,
the diversity in NIC hardware features increases the difficulty of using these
capabilities.

In this chapter, we present Dragonet, a new approach to building a host
network stack that attempts to address these concerns. The objective of
the Dragonet approach is to enable the host network stack to exploit the
NIC hardware capabilities in a hardware-agnostic way. We currently target
Quality of Service (QoS) and bandwidth controlling hardware capabilities,
and this approach can further extended to improve latencies as well. We aim
to provide management of network resources based on high-level policies by
systematically searching the NIC configuration space.

Dragonet introduces two changes to implementing a network stack. First,
it uses dataflow models to capture the capability of the NIC hardware and
the state of a network stack. These models enable automatic reasoning for
configuring the NIC hardware and customizing the network stack execution
to achieve specific user requirements.

Second, Dragonet offers new interfaces based on the dataflow model which
allow adaptable network stacks to easily exploit NIC hardware in a portable



3.2. BACKGROUND 33

way.

In this chapter:

• We propose a dataflow-based model (3.3) that provides a unified way
to abstract NIC hardware and network protocols, aiming at addressing
the increasing complexity and diversity of NIC hardware.

• We explain the problem of exploring the NIC configuration space (3.4)
and propose using a hardware oracle-based approach (3.4.1) to sim-
plify the problem by reducing the configuration space.

• We propose an interface based on cost-function (3.6.1) as a mecha-
nism for policy-based NIC hardware resource allocation (3.6).

• We propose a new interface between the NIC device driver and the
network stack based on the dataflow model to simplify using hardware
capabilities in a portable way (3.7.1).

3.2 Background

The techniques we use in this work are build build on existing areas of re-
lated work. We discuss these ideas of modeling packet processing in net-
work stacks organized as graphs and declarative techniques for dealing with
hardware complexity.

3.2.1 Modeling packet processing as graphs

Modeling is a useful technique to analyze certain properties or to provide
reasoning about a software or hardware system. The abstractions used for
modeling dictates what type of reasoning it can support. For example, the
Kahn Process Model (KPN) [Gil74] can capture and reason about paral-
lel computation performed by autonomous systems communicating with
each other. Synchronous languages are used to model and verify the re-
active systems which are continuously reacting with environment [Hal98].
These models are focusing on capturing concurrency and providing rea-
soning about the correctness and they are not well suited for modeling the
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packet processing which typically has little concurrency and hence need dif-
ferent approach.

The x-Kernel [HP91] uses the approach of modeling the protocol process-
ing in the network stack as a graph in order to simplify the development
and composition of new network protocols by using a common set of ab-
stractions. Each protocol (e.g., IP, UDP, TCP) in the x-Kernel represents an
object, and these protocol objects are organized at kernel configuration time
to compose the network stack.

The Click soft router [KMC+00] uses a model based on directed-graph to
build flexible and configurable software routers by assembling simple packet
processing modules. These modules are called elements, and each element
implements a simple packet processing function as a C++ object.

The SoftNIC approach [HJP+15] uses a dataflow graph model to create a
modular packet processing pipeline. Each module in this pipeline imple-
ments a NIC feature. The pipeline is assembled based on the features which
are available in the NIC. The SoftNIC utilizes the Intel DataPlane Devel-
opment Kit (DPDK) [int] to query and program the NIC features in the
hardware.

These approaches use the graph model to specify the required packet pro-
cessing and to facilitate the implementation these desired functionalities. In
the Dragonet approach, we use the dataflow graph model to enable reason-
ing about the hardware capabilities and software requirements, as well as to
implement a specialized network stack.

3.2.2 DSL to capture hardware capabilities

There is a long tradition of using Domain Specific Languages (DSL) for
hardware description in OS development. Device trees describing platform
configuration are widely used in modern operating systems like Linux. The
Device trees are used particularly for system-on-chip hardware [LB08]. Re-
search DSLs like Devil [MRC+00] and Mackerel [Ros13] help simplify ac-
cessing the device registers, and Termite [RCK+09] aims to use the device
specification to generate correct-by-construction device driver code. The
Dragonet approach for hardware modeling is complementary: it does not
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provide a hardware access mechanism, but instead provides a semantic de-
scription of the available functionality.

The P4 [BDG+14] language uses a DSL approach to model the packet
processing for programmable network switches in protocol-oblivious and
hardware independent way. This approach focuses on modeling protocol-
oblivious packet processing using match+action table abstraction, these
match+action tables are then programmed into a Reconfigurable Match Ta-
ble (RMT) pipeline provided by the recent programmable network switches
[BGK+13, Ozd12]. Our approach differs from P4 by focusing on model-
ing the capabilities of the NIC hardware, and then working out how to use
these capabilities for the current network state. The Dragonet approach uses
a dataflow graph model suited for the NIC hardware and differs from the
match+action table model used by P4.

The FlexNIC project [KPS+16] uses an interface inspired from the P4 lan-
guage to provide flexible DMA capabilities and offloading application-specific
operations onto programmable NIC hardware with RMT capabilities. Our
Dragonet approach differs from the FlexNIC approach as we are targeting
fixed function capabilities in the NIC hardware, whereas FlexNIC aims to
exploit RMT hardware support.

In Dragonet, we are using dataflow-based interfaces to pass information
about current capabilities between different layers and efficiently exploit the
diverse set of NIC hardware features in a hardware-agnostic way.

3.3 Dataflow Modeling

The primary challenge motivating Dragonet is NIC diversity. We tackle
this challenge by making an assumption about NICs to simplify our model:
we assume that it is possible to represent their functionality as a dataflow
graph. Based on this assumption, we create a dataflow-based model capable
of capturing the NIC functionalities, as well as the state of the network stack.

We build our models using a small set of abstractions as basic building
blocks. The core of Dragonet consists of three node types: (i) function
nodes (f-nodes), (ii) logical operator nodes (o-nodes) and (iii) configuration
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nodes (c-nodes) . The f-nodes combined with the logical operators model
the execution flow and dependencies of protocol processing, while the c-
nodes capture the configuration options of the NIC.

These basic building blocks are not sufficient to fully model a NIC: for ex-
ample, reasoning about performance requires more information than the
PRG provides. To avoid making additional assumptions about NICs, we
handle these cases by annotating nodes with attributes (3.3.5). Although we
expect to build common abstractions for many of these attributes, they are
external to the basic node model.

Our model is not intended to be a precise representation with all the proce-
dural information at instruction level about the computations. Instead, it is
high-level declarative description of the protocol processing with informa-
tion about their order and dependencies.

We model both the network stack and the NIC hardware as dataflow graphs.
We call them the Logical Protocol Graph (LPG), and the Physical Resource
Graph (PRG), respectively.

The main goal for our model is to capture protocol processing capabilities
and network state (discussed in section 3.3.1). In addition, our model also
need to support a way reason about the network state in context of NIC
hardware capabilities. We provide this reasoning by embedding the PRG in
the LPG. The embedding algorithm maps parts of the LPG into the PRG
based on the hardware capability. The mapped nodes represent protocol
processing operations that are offloaded to the hardware. The remaining
nodes are parts of the protocol which will not be implemented in hardware
and thus must be emulated in software. We discuss embedding in more
details later (3.7.2).

Our approach of using Directed Acyclic Graph (DAG) based dataflow model
to represent packet processing has few implications. One of the important
implication is the difficulty in representing protocol processing involving
cycles. Our model does not prohibit cycles, but it does not yet provide first-
class mechanisms to capture cycles and reason about it.

Next, we discuss how we model the network state using the LPG, and the
NIC capabilities using the PRG. We also describe Unicorn (3.3.6), the Do-
main Specific Language (DSL) we created to simplify the development of
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these models and show an example of modeling the Intel i82599 using our
DSL (3.3.7).

3.3.1 Network state

Typically the host network stack needs to maintain a view of the global net-
work state (e.g., routing table, ARP cache) and information about the local
networking resources (e.g., available NICs, their MAC and IP addresses), so
that the network stack knows how to communicate with other hosts. Most of
this information is fairly static and is applicable to the whole machine and
not just a single application.

In addition to the network and machine specific information, the network
stack also needs to maintain application-specific state information about
currently active flows. The application-specific state can include informa-
tion about the application buffers, the CPU cores used by the application,
currently active send and receive requests, flow manipulation requests (e.g.,
socket, connect, listen, close), application endpoint descriptors (e.g., file de-
scriptors associated with network sockets), etc.

The network stack also need to maintain the flow-specific state including
the remote and local endpoint addresses, connection type, a current state of
the flow, attributes associated with the flow (e.g., bandwidth required and
allocated, other QoS attributes).

Furthermore, the network stack need to maintain the protocol-specific state
for each protocol used by the active flows. For example, for every TCP
flow, the network stack need to maintain the TCP state information (e.g.,
sequence and acknowledgment numbers, buffer windows, congestion win-
dows, timers, etc.).

We need to be able to capture this state in our model either explicitly or
implicitly. We describe our approach to model the network state next.
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Figure 3.1: Simplified LPG example for receive side with two UDP applications
listening on ports 7 and 11211

3.3.2 Logical Protocol Graph (LPG)

The LPG represents both the static parts of protocol processing (e.g., the
calculation of the checksum of incoming packets), as well as the dynamic
network state (e.g., the network flows as they come and go). It is a logical
description in the sense that it is concerned with what needs to be executed
for each packet which might be sent or received by the network stack rather
than how. The LPG can be derived from the current OS protocol stack state.

The LPG is directed and, broadly speaking, represents the processing re-
quired for a packet from the NIC to reach the matching application and vice
versa. Viewed from the opposite direction (i.e., by reversing the edges) the
graph represents the processing dependencies of the network stack. For ex-
ample, before a received packet reaches the user application, its checksum
must be computed and validated.

Fig. 3.1 shows an example of a simplified LPG for a receive side with sup-
port for Ethernet, IP, and UDP processing. In this particular example, two
applications, echoServer and memcached, are waiting for packets on UDP
ports 7 and 11211 (depicted by nodes ToSocket0 and ToSocket1) re-
spectively.

Next, we discuss the main building blocks used in modeling the network
state using the LPG.
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Figure 3.2: Example of f-nodes (with white background) and o-node (with gray
background) as a building block for creating the LPG

Function nodes (f-nodes)

The f-nodes are the basic components of our graphs. They represent indi-
vidual packet computations and are labeled based on the computation they
implement. Each f-node has a single input edge and multiple output edges
grouped in ports. An internal implementation function is specified for each
f-node. Conceptually, the implementation function performs the processing
on the input data and enables a single output port of the f-node. Enabling
an output port results in enabling the nodes that are connected to by the
edges of that port. Enabled nodes can be executed in subsequent steps. Typ-
ically, function nodes are used for implementing protocol processing, and
can also manage the protocol-specific state. In the example of Fig. 3.2, the
f-node labeled Prot checks the protocol type of the incoming packet. If
the protocol is "a", then it enables two f-nodes which checks whether the
packet has a valid length and a valid checksum (ValidLen and ValidCsum
respectively).

Operator nodes (o-nodes)

F-nodes have a single input, and hence can capture only linear paths. To
handle concurrent paths, where enabling an f-node might depend on the
output of multiple other f-nodes, we use logical operator nodes (o-node).

Each o-node corresponds to a logical operator (e.g., OR, AND), and is used to
combine the outputs of multiple nodes. Each of these input nodes connects
two output ports to the o-node: one corresponding to true and one to false.
As can be seen in Fig. 3.2, we represent these two edges with double lines
originating from the T/F ports. O-nodes activate one of their output ports
(T for true and F for false) based on the semantics of the logical operators
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(e.g., OR, AND). In the example of Fig. 3.2, the AND’s T port is enabled if
both inputs are true, otherwise the F port is enabled. The logical operators
can also be short-circuited to enable the output as soon as it has sufficient
information available. In addition, if the o-node has only one input, then it
is assumed to forward the input directly to the output by default.

3.3.3 NIC capabilities

We take the Intel i82599 [Int10b] as an example NIC to describe complex
features and capabilities available in recent server NICs.

The Intel i82599 NIC has protocol-specific features including TCP seg-
mentation offload, checksum calculation, packet reassembly, jumbo frames,
header splitting on received packets, replicating broadcast/multicast pack-
ets, and bandwidth shaping features including transmit rate schedulers. The
NIC can also do packet validations including detecting under/over size pack-
ets and CRC validations.

Furthermore, the NIC has 128 send and receive queues and different types
of filters to steer the flows into these queues. These filters include 128 MAC
address filters, VLAN filters, 128 5-tuple filters, a syn filter and large num-
ber of flow director filters (32K for hash filtering mode, or 8K for perfect
match mode).

The processing applied on the packet and the final destination of the packet
depends on both the configuration of the NIC and the packet content. We
need a way to capture the protocol processing and flow steering behavior of
the NIC for a given configuration. In addition, we also need a way to capture
the impact of different configurations on the behavior of the NIC. Next, we
describe our approach to model the NIC capabilities.

3.3.4 Physical Resource Graph (PRG)

We need a way to capture the capabilities and the current configuration of
the NIC hardware so that we can reason about it. For this purpose we use
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a Physical Resource Graph (PRG). Our primary goal is to facilitate the au-
tomated reasoning about hardware capabilities and the network stack state,
we therefore use the same dataflow model to capture both.

There are two main aspects of the NIC hardware capabilities we want to rea-
son about. The first aspect is the entire space of potential functionalities that
a given NIC can provide. This information is needed for the NIC resource
management and is useful to decide which hardware functionalities should
be enabled based on the current network stack state, and to understand their
implications. We use the unconfigured PRG (U-PRG) to capture this in-
formation.

The second aspect is the information about the specific NIC hardware func-
tionalities which are currently configured in the NIC hardware. This infor-
mation is needed by the network stack control path to adapt the data path and
the packet processing in order to exploit the work done by NIC hardware.
We use the configured PRG (C-PRG) to capture and pass the information to
the host network stack (further details will be provided in section 3.7).

A simplified example of PRG for the receive side of the Intel i82599 NIC is
shown in Fig. 3.5.

The PRG model is not intended to precisely represent the NIC hardware
design, but rather to model the protocol processing capabilities of the NIC
along with its configuration space. The PRG can be built by studying the
device datasheet and the device driver. Developing the PRG is a one-time
effort and can be developed with a device driver ideally by the hardware
vendor.

Next, we discuss additional building blocks needed for PRG modeling, and
explain how we generate C-PRG from U-PRG.

Configuration nodes (c-nodes)

Modern NICs offer rich configuration options that can drastically vary the
NIC’s behavior. We represent a NIC configuration and how it affects the
resulting PRG using c-nodes.
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At a high level, a c-node represents the configuration space of the NIC. Each
c-node corresponds to a configuration variable. It specifies the set of possi-
ble values, and how applying a value affects the graph. Applying configu-
ration value to a c-node results in a set of new nodes and edges that replace
the c-node in the graph. Each c-node defines how the graph is modified by
adding new nodes or edges, based on a configuration value. If we allow
each c-node to modify the PRG in arbitrary ways (i.e., add edges and nodes
everywhere in the graph), reasoning about configuration becomes challeng-
ing, especially when multiple c-nodes exist in the graph. To avoid this, we
constrain c-node modifications to be local in the area defined by the c-node.
Specifically, all new edges added by a c-node must have a source node which
is either a new node or a node x for which an edge exists from x to the c-
node in the unconfigured graph. Analogously, all new edges must have a
destination node which is either a new node or a node x for which an edge
exists from the c-node to x in the unconfigured graph. Under this restriction,
the changes that a configuration node can apply to the graph are restrained
to the nodes that it is connected with.

More formally, assuming a graph G (typically the PRG) with vertices G.v
and edges G.e, a generic c-node x ∈ G.v

consists of a configuration space Cx and a function fx that maps each point
in the configuration space c ∈ Cx to a subgraph Γ.

Subgraph Γ consists of vertices Γ.v and edges Γ.e, and is subject to a
number of constraint: First, vertices in Γ.v should not already exist in G
(Γ.v ∩ G.v = ∅). Second constraint, if Ix are the nodes that point to
x (Ix = {i ∈ G.v | (i, x) ∈ G.e})1 and Ox are the nodes pointed by x
( Ox = {o ∈ G.v | (x, o) ∈ G.e} ), then each edge in Γ.e should start
from a node in either Ix or Γ.v and point to a node in either Ox or Γ.v
(∀(j, k) ∈ Γ.e : (j ∈ Ix ∪ Γ.v) ∧ (k ∈ Ox ∪ Γ.v)). When applying a
configuration c to a c-node x in a graph G, G changes in two ways: (i) x
is removed and vertices Γ.v are added to to G.v (ii) x’s edges are removed
and edges Γ.e are added to G.e.

In practice, we model most of our configuration nodes using simple c-nodes,
i.e., nodes that select one of their output ports based on the configura-

1for simplicity, we ignore that in actuality our edges originate from ports rather than ver-
tices.
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Figure 3.3: Example of a c-node with a boolean configuration value, and a resulting
C-PRG when the configuration node is enabled and disabled with a configuration
value true and false respectively.

tion value. Fig. 3.3a shows an example of a simple configuration node
CValidCsum, which can enable or disable functionality of ValidCsum
based on the boolean configuration it provides. If the configuration is en-
abled, then the node will get replaced with an f-node providing the CValidCsum
(Fig. 3.3b), and if the configuration is disabled, the configuration node will
be removed (Fig. 3.3c).

C-nodes aim to address the diversity of modern and future NICs and are
intended for algorithms that explore and evaluate different configuration
options. Each c-node models the configuration space it supports, and the
implications of applying a particular configuration to the PRG. This func-
tionality allows a systematic exploration of the whole configuration space.

C-nodes with a small configuration space (e.g., a single register that enables
or disables a NIC feature) can be naively handled by these algorithms using
exhaustive search. Exhaustive search, however, is highly inefficient for c-
nodes with a very extensive configuration space (e.g., a configuration for
mapping network flows to hardware queues). These cases typically require
additional a priori knowledge to reduce the search space. When steering
network flows to hardware queues, for example, space can be reduced by
only considering filters that match network flows corresponding to active
connections.

An alternative approach to c-nodes could be to enforce a common abstrac-
tion on the PRG level that simplifies the search in the configuration space.
However, the diversity of NICs makes it difficult, if not impossible, to devise
a common and future-proof abstraction for the configuration space without
substantially sacrificing flexibility. Here, we decided to take a most flexible
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approach of exposing the full NIC configuration space on the PRG. Expos-
ing the entire configuration space allows implementing NIC-specific poli-
cies that can exploit any capabilities of a NIC. At the same time, it does not
exclude the possibility of building common abstractions on top of the low-
level PRG interface, in a similar manner as common NIC drivers implement
an OS-specific interface.

Configuring the PRG

A PRG node which has unconfigured c-nodes is called unconfigured PRG
(U-PRG). The configuration of the PRG is not a single step process, and
each c-node can be configured separately, giving us partially configured
PRGs during the intermediate steps. This process of configuring the PRG
can also be viewed as progressively making the PRG concrete.

Once all the c-nodes in the PRG are configured, we get a fully configured
PRG (C-PRG). The fully configured PRG can be passed to the network
stack to inform it about the exact processing which will take place.

3.3.5 Attributes

Our model provides the flexibility to capture additional information by an-
notating nodes with attributes. We use attributes as a way to extend our
model with additional functionalities.

These attributes can be useful when reasoning about the model, or to sim-
plify its execution. For example, a fine-grained performance model for
the whole network stack can be built by annotating each node in a graph
with their individual performance characteristics, such as CPU cycles used,
throughput, and latencies.

As Dragonet matures, we expect to define common abstractions for many of
these attributes. In the following paragraph, we discuss a potential use case.

Protection attributes: The execution of certain nodes in a graph is critical
for the overall correctness and protection of the network stack. For example,
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classifying incoming packets correctly and copying them into the applica-
tion address space is a security-critical operation, and therefore needs to
be executed by a codebase which is trusted by the system to behave cor-
rectly. On the other hand, calculating the UDP checksum does not need to
be trusted by the system as it can only affect the correctness for a specific
flow.

By annotating the nodes with attributes with their security properties, we
can extend the embedding process to adapt based on the security model
constraints, or the NIC hardware capabilities for protected DMA to the ap-
plication address space [Sol10b]. For example, if the deployment system
fully trust the application code to work correctly, then we can use this trust
to allow the application to directly access the NIC hardware queues without
worrying about protection related consequences.

3.3.6 Unicorn

Unicorn is a domain specific language to express the LPG and PRG so that
they can be easily generated from concise descriptions, and effectively ma-
nipulated by appropriate algorithms that implement the embedding and pos-
sibly other operations.

Unicorn language has two different aspects: (i) a concrete syntax for writ-
ing descriptions of NICs, and (ii) an abstract model for representing Drag-
onet dataflow graphs, (PRGs and LPGs). The concrete syntax is intended for
only writing PRGs based on descriptions found in the NIC vendor documen-
tation, though we also use it to write test-case LPGs for development and
debug purposes. At runtime, the Dragonet protocol stack itself will maintain
the LPG as connections come and go. Since there is a close correspondence
between the concrete syntax and the abstract model, we will mostly conflate
them in this chapter.

Unicorn implementation

We implemented Unicorn using Haskell’s QuasiQuotes as an embedded
DSL in Haskell [Mai07]. Our DSL provides a convenient way to try out
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LPG models for protocol processing, PRG models for NICs and embedding
algorithms for network stack specialization.

We present an example showing a code snippet written in our DSL in Fig. 3.4.
Most model objects are defined using a keyword followed by an identifier
and a body in brackets. Keywords have the expected semantics: node de-
fines f-nodes, config defines c-nodes, and graph defines graphs. The con-
nectivity of the nodes is modeled using ports that connect to a list of nodes.
For example, port ipv4 of an f-node EthClassifyL3_ connects to two
nodes: IsIPv4 and IPv4Csum_. Attributes are defined using the attr

keyword. An explanation of IsIPv4’s software attribute is given in §3.3.7.

A c-node is defined using a set of ports and a configuration type speci-
fying their configuration space. The type provides information about the
configuration space of the c-node. For example, the EthCVCRC c-node has
a simple boolean configuration space whereas C5TupleFilter supports
configuring 128 separate five-tuple filters, each containing source, destina-
tion IP address, source and destination port numbers, protocol type, priority,
and the target queue-id. This structured information about the configuration
space provides a way to enumerate the configuration space.

A c-node can be configured by binding it to a specific configuration value
from the supported configuration space. For example, EthCVCRC can be
configured with a value true to enable the CRC checksum validation func-
tionality in hardware, or it can be configured with a value false to dis-
able this functionality. Generic c-nodes are implemented using an additional
Haskell function that implements the functionality of fx as described in sec-
tion 3.3.4. For EthCVCRC node, this function is configValidCRC, and it
can either replace the c-node with the f-node, or remove the c-node from the
PRG based on the configuration value provided. Fig. 3.3 shows an example
of how this function will work based on the configuration.

The constructs discussed above constitute the basic core of the language.
We also have shorthand notations to avoid boilerplate code, to support more
intuitive error messages, and to simplify the programming. For example,
our prototype supports boolean nodes, defined using the keyword boolean

instead of the keyword node. The boolean nodes are constrained to a spe-
cific structure: they are expected to have exactly two output ports: true

and false. Another example is the cluster construct, which supports
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hierarchical definitions to group the nodes together and avoids repeating the
same prefix in node names.

3.3.7 Example: Modeling the i82599 with Unicorn

Here we discuss how we model the Intel i82599 NIC [Int10b]. Part of the
Intel i82599’s receive path PRG is shown in Fig. 3.5. We focus on two inter-
esting features of the Intel i82599 from a modeling perspective: hardware
checksum calculation and hardware queues. In Fig. 3.5 we present a simpli-
fied example of the U-PRG and two different C-PRGs generated using two
different configurations.

Hardware checksum calculation

The Intel i82599 NIC supports hardware checksum calculation for a few
protocols (e.g., Ethernet, IPv4 and TCP), however, modeling these func-
tionalities is not trivial. In addition to handling the configuration space with
a c-node, our model also needs to handle the partial implementations and
non-standard ways to access the results of the hardware computation. For
instance, the NIC supports classifying IPv4 packets on the receive side and
verifying the IPv4 checksum. However, the results of these computations
are stored in the descriptor passed to the network stack, thus making a min-
imal amount of software processing necessary.

To deal with these cases, we add software nodes to the PRG. Software nodes
allow expressing dependencies between PRG nodes and software nodes,
thus capturing any additional device-specific software functionality required
from the driver. These NIC-specific software nodes implement the required
functionalities by interpreting the partial work done by the NIC hardware
and implementing the rest in software. In Fig. 3.5 for the Intel i82599, the
IPv4Classified and IPv4VCsum are the software nodes (in our graphs
they are denoted with dashed boxes). These nodes test if the packet is of
type IPv4, and the validity of a checksum by interpreting the flags set in the
packet descriptor, instead of performing the complete checks on the packet
itself.
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1 graph e10kPRG {
2 cluster Rx {
3

4 config EthCVCRC {
5 type { (enabled: Bool) }
6 function configValidCRC
7 port true[EthClassifyL3_]
8 port false[] }
9

10 node EthClassifyL3_ {
11 port ipv4[IsIPv4 IPv4Csum_]
12 port other[ToDefaultQueue] }
13

14 boolean IsIPv4 {
15 implementation E10kL3IPv4Classified
16 attr "software"
17 port true[]
18 port false[] }
19

20 config C5TupleFilter {
21 type { (sip: <UInt 32>,
22 dip: <UInt 32>,
23 proto: <Enum (TCP,UDP,SCP,OTHER)>,
24 sport: <UInt 16>,
25 dport: <UInt 16>,
26 prio: Int 1 7,
27 queue: <UInt 7>) } <,128>
28 function config5tuple
29 port queues[Q0Valid Q1Valid Q2Valid]
30 port default[ToDefaultQueue] }
31

32 } // end cluster: Rx
33 } // end graph: e10kPRG

Figure 3.4: Unicorn snippet for PRG shown in Fig. 3.5a.
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Figure 3.5: Simplified PRG example of the receive side of the Intel i82599 10GbE
adapter. It presents an unconfigured PRG and two differently configured PRGs based
on two separate configuration values.
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Hardware queues and filters

Hardware queues are a common feature of modern NICs. They provide
multiple receive and transmit descriptor queues to the OS, as well as packet
filtering facilities. These hardware features are mainly used for steering
the flows into different hardware queues which can then be processed by
separate cores, leading to better utilization of the multicore CPUs. These
hardware features are becoming increasingly important for scalable packet
processing and quality of service for network flows on the modern multi-
core architectures. The hardware queues and filters are also instrumental
for recent research in the separation of data and control flow in network
processing [PLZ+14, BPK+14].

Due to the advantages of hardware queues and filters, the ability to manage
them is becoming increasingly important. Unfortunately, diversity in the
capabilities and semantics of these filters make it difficult to manage them
in a portable way. In chapter 5, we will examine the diversity of these fil-
ters (5.2.2) and the complexity involved in modeling and configuring them
(5.3.1) in the context policy-based queue management. Here, we focus on
showing how we can use Unicorn to model the complexities of these filters.

Modeling 5-tuple filters in Intel i82599 NIC: The Intel i82599 NIC pro-
vides a wide range of different filters, each with different configuration op-
tions. Two examples of these filters are 5-tuple filters, and flow director
filters. The 5-tuple filters are specified by a 5-tuple that includes (i) type of
protocol, (ii) source IP address, (iii) destination IP address, (iv) source port,
(v) and destination port . Any field in the tuple can be masked to provide
the wildcard matching behavior so that the filter can match any value for the
masked fields. The flow director filters can either be configured to provide a
hash-based imperfect matching or an exact matching on the configured set
of fields in the 5-tuples.

We present an example of modeling 5-tuple filters in the Fig. 3.4. The Uni-
corn code for the C5TupleFilter c-node captures the configuration space
of this filter with the keyword type. This composite type tells the exact for-
mat of the configuration values and the valid range that can be configured in
the filter.
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The Unicorn code also provides a Haskell function config5tuple which
models how a given configuration value will change the c-node. We will
revisit how the configuration values are implemented by the typical filter
c-nodes in greater details in the later chapter (5.3.1).

In Fig. 3.5c, we show an example with two filters. The first 5-tuple filter is
configured to match UDP packets with a destination port equal to 7 (shown
with f-node 5T(UDP, *, *, *, 7) and forward them to the RxQueue1
hardware queue. The second 5-tuple filter is configured to match UDP pack-
ets with a destination port equal to 11211 (shown with f-node 5T(UDP,
*, *, *, 11211)) and forward them to the RxQueue2 hardware queue.

We further discuss the filter configuration management (section 5.3.1) in
chapter 5 in the context of hardware queue management.

3.4 Exploring the configuration space

A model of the hardware capabilities provided by the PRG is a first step
towards a portable resource management solution. The next step is to find a
configuration which is relevant for the current network stack state (captured
by LPG). This is done by exploring the configuration space of the PRG.

The exploration of the configuration space is hard because the behavior of
the NIC depends on the configured values in all the configurable fields. We
can’t evaluate configuration of a one field at a time. Instead, we need to
generate values for all the configurable fields in the NIC, and only then we
can determine the behavior of the NIC under that configuration.

For example, the PRG shown in Fig. 3.5c has a relevant configuration for the
LPG described in Fig. 3.1 with two flows (5T(UDP, *, *, *, 7) and
5T(UDP, *, *, *, 11211)) mapped into two hardware queues (Q1
and Q2 respectively). Even though configuring two filters is sufficient to
steer the flows in proper queues, we still need to consider the configuration
values of all 128 filters to check if any other filter is also steering packets
to these two queues. This is simple example of how the behavior of NIC
depends on the configuration of entire NIC.
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A naive approach would be to walk through the entire configuration space of
the PRG and test if the current configuration maximizes the benefits based
on the current resource allocation policy.

The naive approach of evaluating all possible configurations is prohibitively
expensive as the configuration space of modern NIC is huge. For example,
the Intel i82599 NIC supports RX packet filtering based on five tuples in
the IPv4 packet header. This involves configuring both source/destination
IPv4 addresses and source/destination port numbers, port type and a desti-
nation queue. These values can be configured in 232 ∗ 232 ∗ 216 ∗ 216 ∗ 27

different ways. The i82599 NIC has 8K such flow director filters, increasing
the configuration space further to approximately 2116 bits just to configure
the flow director filters. This is not the only type of filter as this NIC also
supports 32K signature based filters, 128 5-tuple filters, Ethertype filters,
etc. We discuss these filters in further details in later chapter (5.2.2). The
filter configuration is just one type of configuration. There are other ca-
pabilities (e.g., virtualization, rate control) which can be configured. Thus
leading to a further increase in the configuration space. Hence, we believe
that a comprehensive search of the configuration space would require an
unreasonable amount of time.

We can prune a large part of the configuration space by using information
from the LPG about the current network state. We can, for instance, limit
the PRG configurations based on the current active flows and protocols used.
This approach of using the current network state to limit the configuration
space depends on understanding which hardware features are relevant for
which network state, and how to configure a relevant hardware feature based
on a given network state. For example, to generate a configuration for U-
PRG (Fig. 3.5a) based on the network state in the LPG shown in Fig. 3.1
to reach the state shown in C-PRG (Fig. 3.5c), we need the knowledge that
the flows wildcards (e.g., 5T(UDP, *, *, *, 7) and 5T(UDP, *,

*, *, 11211)) can be mapped onto the 5-tuple filters by applying the
appropriate mask.

We take the approach of using the network state for exploration of con-
figuration by implementing NIC specific oracles. This oracle can use the
hardware-specific knowledge about the relevance of a hardware feature for
the network state to propose configurations which are meaningful to the
network state. Hence this approach significantly reduces the configuration
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space.

3.4.1 Hardware oracle

The hardware oracle tackles the problem of large configuration space explo-
ration by only suggesting reasonable configurations which are then further
evaluated by the search step (3.6.2). The oracle takes the hardware PRG,
current hardware configuration, and the requested change in a network state
as an input. It uses this information and the NIC-specific knowledge to sug-
gest a set of incremental changes to the given configuration.

The oracle is responsible for returning the few configuration changes which
are most relevant to the requested network state change in the current situa-
tion of the NIC configuration and the current network state. Another way of
thinking about the hardware oracles is that they are responsible for mapping
the network state onto the NIC hardware capabilities so that we do not have
to struggle blindly with all possible configurations.

The oracle is basically an optimization to reduce the search space of poten-
tial configurations. For example, the most extreme version of an oracle is
the generic oracle implementation that returns all possible configurations
irrespective of the network state. The other extreme is the minimal oracle
implementation which always returns a basic configuration needed to make
the NIC functional without using any additional features, or the hardcoded
oracle which always return a single fixed configuration.

Oracle developers need to understand the network state and its implications
on the NIC hardware configurations. They are responsible for the trade-
off between the flexibility of using NIC hardware features and reducing the
search space. The hardware oracle needs to limit the way in which a NIC
can be used, but it should not implement a resource management policy.
For example, the minimal oracle enforce a policy of using no additional
hardware features, and the hardcoded oracle enforces a single policy. The
generic oracle allows any configuration but at the cost of larger search space
exploration. We discus an implementation of the hardware oracle in further
details in the later chapter (5.3.2).
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3.5 Understanding application requirements

A network stack needs to understand what exactly the application is trying
to achieve with network flows, so that it can provide those functionalities
while exploiting the NIC hardware capabilities whenever applicable.

As most old NIC hardware was limited to the simple transmitting and receiv-
ing of the packets, traditional network stacks provided a simple interface to
applications to facilitate requesting flows and for data transmission and re-
ceiving. A common interface for this is the socket interface [LJFK86].

Even though the socket interface has evolved to support additional attributes
flows using setsockopt [soc08], the flexibility provided to applications
for fine-grained control over flow manipulation is limited. For example, it
is difficult for applications to control load balancing of the incoming traffic
on a single socket between multiple application threads running on separate
cores.

Moreover, the socket interface makes it difficult to exploit NIC hardware
capabilities for the benefit of applications, and therefore researchers have
started exploring ways to extend the socket interface to take advantage of
the hardware capabilities [JJ09].

The socket interface is also restrictive when the NIC hardware implements
partial application logic (e.g., ApplicationOnload Engine [Sol12]) as it does
not provide any means to specify which application processing can be pushed
to the hardware. To accomplish offloading, the applications need to rely on
vendor-specific interfaces.

We need a more flexible interface to capture the application requirements for
packet processing so that applications can benefit from the increasing NIC
hardware capabilities without having to rely on vendor-specific interfaces.

3.5.1 Interfaces based on dataflow model

Ideally, the application should be able to specify its requirements using a
detailed dataflow graph including the desired flows, packet processing, and
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other application specific requirements. Using the flexible interface of a
dataflow model can allow applications to offload application level packet
processing. For example, an application can specify which part of the packet
payload it is interested in, and which packets can be dropped without deliv-
ering to the application.

Even though the dataflow-based interface can be very powerful, we are cur-
rently not targeting hardware which supports the offloading of application
logic. Hence, we have settled on a simpler, network flow based interface
in our current implementation (presented in the next section 3.5.2). We use
this interface to collect application requirements and use them to update the
LPG.

We believe that extending Dragonet to directly expose the generic dataflow-
based interface to applications should be feasible with some more engineer-
ing. We are already using the dataflow model for most of our processing,
and exposing it directly to the applications should not be difficult.

In addition to not exposing the dataflow-based interface to applications di-
rectly, we are currently also missing a mechanism which applications can
use to precisely and safely define the processing required by them. These
two extensions will be needed in the current Dragonet implementation to
exploit fully programmable NIC devices.

3.5.2 Network flow management interface

Dragonet network stack provides a network-flow-based interface to the ap-
plications which can be used to register for individual network flows, or to
manipulate them.

We define a flow as a predicate on a network packet. For example, a lis-
tening UDP socket defines the class of packets that will reach the socket.
Similarly, a TCP connection defines the class of packets that are part of this
connection. It is worth noting that, even though UDP is connectionless, we
can still define a UDP flow as the class of packets that have a specific source
and destination UDP endpoints (IP/port). The predicate can be considered
as a tuple of the protocol types and the protocol-specific addresses of the
flow endpoints. In addition, any of these fields can be partially or fully
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masked for a more inclusive definition of a flow, or to group certain flows.
This representation maps well to the address abstractions used by the socket
interface for flow-manipulating calls (e.g., connect and bind calls).

Typical network flow operations include registering or closing flows, divid-
ing them between multiple endpoints, or controlling the way a flow will be
forwarded. Once the network flow is assigned to the application, the appli-
cation can directly send and receive data on it using the data plane interfaces.

In addition to requesting a flow to be directed to it, an application can also
specify the desired attributes for the flows. These attributes can be priority,
bandwidth or latency requirements, or load balancing policies.

The network flow interface differs from the socket interface as it only deals
with the control plane, whereas the socket interface provides both the con-
trol plane and the data plane interface. Regarding flexibility in manipulating
the flows, the network flow interface is located between the socket inter-
face and the dataflow-based interface. It supports more manipulations and
flow attributes than the socket interface, but it does not provide mechanisms
pushing down application logic.

Dragonet uses the flow definitions and the attributes to capture the applica-
tion requirements and populate the LPG with them. In addition to specifying
how the network flows should be forwarded to the applications, this LPG is
then used for policy-based management of NIC capabilities.

3.6 Policy-based resource allocation

After generating a set of interesting configurations using the hardware ora-
cle, we need to select one configuration we will use. This selection gives
us an opportunity to enforce certain resource utilization policies by making
sure that the selected configuration meets the criteria needed by the resource
allocation policy. We formulate this as a search problem where our goal is to
find a configuration that is most suited for current resource allocation poli-
cies. Fig. 3.6 gives an overview of the steps involved in the policy-based
resource allocation.
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Figure 3.6: High-level view of the steps involved in policy-based resource allocation
using Dragonet

A naive approach to resource allocation is to hardcode the policies and crite-
ria directly in the search process. Different resource allocation policies can
be implemented by selecting different search implementations. We take the
generic approach of separating the policies using a cost function that will
be used to score the configurations during the search. This separation helps
us to simplify the implementation of policies as a cost function and enables
us to test different search strategies without worrying about the policies.

This design decision also implies that we will not be able to reduce the
search space by exploiting policy-specific properties, but we believe that the
simplicity and flexibility provided by this separation are worth losing a few
potential optimizations.

We discuss the search problem next (3.6.2) and then present the cost func-
tions (3.6.1)

3.6.1 Cost functions: Hardware agnostic policies

We need a way to decide how “good” a given configuration is so that we can
select a useful configuration in a hardware-agnostic way. As the definition
of “goodness” depends on what application developers and system admin-
istrators want to achieve, we need a mechanism by which the administrator
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can specify their goals. We directly use the definition of “goodness” as the
NIC resource management policy, and we use a cost function abstraction
for defining the goodness for a desired resource allocation plan. The cost
function provides a way to score any resource allocation plan given to it
based on a user-defined policy and hence enables searching for the least
costly configuration.

As the cost functions represent resource allocation policies, they are sup-
posed to be hardware-agnostic and should work with different NICs. This
requirement implies that cost functions should only operate on the NIC in-
dependent models to evaluate the resource allocation plans. Our initial plan
was to perform the cost function evaluation using an embedded LPG. The
embedded LPG essentially models how the LPG (capturing network state
and current requirements) can utilize the capabilities provided by the C-
PRG (capturing a particular hardware configuration). We will discuss the
embedding approach and the creation of embedded LPG in more details in
the next section (3.7.2). Using the embedded LPG works well when the re-
source allocation plan does not have to be frequently reviewed. However,
when the resource allocation plan needs to be reviewed frequently, perform-
ing embedding step for each potential hardware configuration suggested by
the hardware oracle, during each review of the resource allocation plan is
prohibitively expensive.

We have simplified the problem above by making an assumption that most of
the control-flow related interactions of an application with a network stack
are related to network flows. We use this assumption to optimize the cost
function evaluation step by using a Qmap representation (discussed in later
chapter 5.4.3) which is centered around the network flows and its attributes
(e.g., groupings, bandwidth requirements, priorities).

An administrator writing a policy using a cost function is expected to eval-
uate the given embedded LPG or the Qmap, and based on how desirable
the given resource allocation plan is, the policy developer can score with a
numerical value. Typically, this can be done by calculating a distance from
the ideal resource allocation plan.

One example of a simple policy is to use the NIC hardware for computations
whenever possible and hence reducing the load on a CPU. This policy can
be easily implemented with a cost function which counts the number of the
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software nodes in the embedded LPG to find the NIC configuration with
least CPU overhead.

In addition to the numerical value representing a non-negative cost (zero
cost representing the least expensive resource allocation plan), we allow the
cost functions to report a verdict on the given resource allocation plan. The
verdict can be one of following three:

• CostReject verdict implies that this configuration is not accept-
able.

• CostAccept verdict implies that this configuration meets all the
requirements of the policy, and there is no need to keep searching
further.

• CostOK verdict says that the configuration meets few of the require-
ments of the policy, but there is a scope for further improvement.

These verdicts reported by the cost functions help the search to converge on
an acceptable solution quickly. The use of these verdicts is an optimization,
and a cost function can always choose to report CostOK with a numerical
score. In this case, a search will have to check all configurations taking more
iterations.

Our approach of using cost functions allows the composing of simpler or
application-specific cost functions to create more complex or system-wide
cost functions. Composite cost functions can be developed by combining the
output of simpler cost functions with either a decision tree or by weighting
them.

We will give examples of a few cost functions in later chapter (5.4.4).

3.6.2 Searching the PRG configuration space

The search phase is responsible for exploring the configuration space of the
NIC by using the hardware oracle to generate the relevant configurations
and then using the cost function to evaluate them. The goal of a search
function is to identify a configuration which will minimize the cost. The
search step determines the quality of the resource allocation by controlling
how frequently and how deep the configuration space will be explored.
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In other words, we can map the resource management problem into a search
problem by using the cost functions to evaluate the NIC configuration (cap-
tured by the C-PRG) in the context of the current network state and applica-
tion requirements (captured by the LPG).

The quality of the resource management depends on how often the search
for the least expensive configuration is performed, exposing the trade-off be-
tween added overhead of the search and the reconfiguration of the runtime
system with the freshness and the quality of the resource management plan.
At one extreme, we can invoke the search for every application request, or
whenever a new flow detected in the system. This approach will provide
the ideal hardware configuration in all cases, but at the cost of perform-
ing the full search and the reconfiguration of the runtime system for every
change, which may not scale for a system with a large number of flows. On
the other hand, we can carry out the search after a fixed interval or after
a certain number of changes observed, which will amortize the search and
reconfiguration cost over these changes. We take an approach of allowing
applications to request explicitly for the search for the configuration space
as added optimization.

We further discuss the implementation of the search in later chapter (5.4.5).

3.7 Dataflow-based Interfaces

Once the NIC hardware is configured, we need an interface to pass the in-
formation regarding the configured hardware functionality to the network
stack so that it can use the information to exploit the work done by the NIC
hardware. If this interface is hardware dependent, and understanding the in-
formation provided by the interface requires hardware specific knowledge,
then using hardware capabilities in a portable way becomes difficult.

A traditional network device driver layer typically provides a queue-based
interface for transmitting and receiving packets [LJFK86]. In Linux, the
device driver interface also provides an IOCTL based mechanism [RC01]
which are used by ethtool [eth] to query and configure the NIC hard-
ware features. This interface pushes the responsibility of understanding the
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semantics of the hardware configuration and its implications to the applica-
tions or to a system administrator.

In the related work section (2.3.2), we discussed few alternate approaches
which re-visited this interface albeit with different motivation. In this sec-
tion, we present the C-PRG interface, which is based on a dataflow model.
The motivation for this interface is to provide the information about cur-
rently configured NIC hardware functionalities in a hardware agnostic way.

3.7.1 Interface based on the C-PRG

Dragonet uses the configured PRG (C-PRG) as an interface to provide in-
formation about the NIC hardware capabilities to the network stack. As
a C-PRG only contains f-nodes and o-nodes, it is hardware agnostic and
captures packet processing done by the NIC hardware. This PRG can be
analyzed by the network stack to infer the attributes and invariants which
will hold on all endpoints of the NIC (e.g. RX and TX queues).

This interface exposes a trade-off between the ability to use the configured
hardware functionalities and the complexities of analyzing and adapting to
a configured PRG. At the one end, the network stack is free to ignore this
information and use the queue-based interface provided by PRG endpoints
without worrying about the work already done by the hardware. At the
other end, the network stack can utilize this information by doing additional
work of analyzing the configured PRG to figure out which processing it can
avoid, and adapting to prevent the duplicate work. In the worse case where
no processing can be avoided, the network stack needs to do all the work in
the software.

Limitations of C-PRG Interface

The configured PRG depends on the PRG developers encoding enough in-
formation in the PRG which can be used by the network stack. This require-
ment is reasonable because it is a one-time effort and provides a detailed
PRG leads to a better utilization of the NIC hardware. Hence it is in the best
interest of a NIC vendor to provide detailed PRGs for their hardware.
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Figure 3.7: Software nodes of an embedded graph that results from embedding the
the LPG shown in Fig. 3.1 on the default RX queue Q0 of the C-PRG shown in
Fig. 3.5b. The EthClassified, EthVCRC and EthVLen nodes are offloaded
on the PRG, and the IPV4Classified node is imported from PRG to meet the
software dependencies of PRG.

However, this interface is not completely future-proof, as this interface can
lead to situations where a network stack does not understand the detailed
attributes provided by the PRG. In such situations, a network stack should
be in a position to safely ignore these additional attributes and still work
correctly by using only the information it understands. For example, if a
network stack understands flow classification constraints but does not un-
derstand bandwidth controlling attributes provided by the PRG, then it can
still make assumptions about where the flows will end up.

We rely on a dataflow model to ensure that dependencies are met and that
there are no conflicts between different types of attributes. Each attribute
can be independently analyzed, and the assumptions made on them can be
aggregated. This independence of the attributes helps us with making the
robust.

3.7.2 Embedding using node labels

One way of benefiting from the information provided by C-PRG is to avoid
duplicating the work that the NIC hardware is already doing by embedding
the LPG graph onto the C-PRG. The embedding process should remove all
functionalities from the LPG which are already being performed in the PRG.
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Our initial approach is to use the labels on f-nodes to compare the func-
tionalities of the nodes in PRG and LPG as a basis for working out which
protocol processing is already done in the NIC hardware. Simple protocol
processing, which can be either turned on or off, can be easily offloaded
using this approach. We implement this simple algorithm by finding the f-
nodes which are common in both PRG and LPG and either move them into
the LPG if the PRG node is implemented in software, or remove them from
the LPG if the PRG node is implemented in hardware.

The result of this simple embedding algorithm is shown in Fig. 3.7. This
example shows that our embedding approach can easily offload basic func-
tionalities like CRC checksum (node EthVCRC), validating packet length
(node EthVLen) on the PRG. The example also demonstrates that our sim-
ple algorithm can correctly handle the PRG software nodes by moving them
into the embedded graph (e.g. IPV4Classified).

To generate a fully embedded graph, we first perform the simple embedding
and then attach the embedded LPG to each active RX queue of the NIC
ensuring that the full packet processing will be executed on all the packets
irrespective of the RX queue on which they arrived.

Limitations of label-based embedding: The label-based embedding ap-
proach works well for simple hardware capabilities which can be turned
on or off but the approach is difficult to scale with complex configurations.
For example, the Intel i82599 NIC supports wildcard entries for the 5-tuple
receive-side filter configurations. Such a flexibility makes it difficult to per-
form the matching of LPG flow classification nodes and PRG filters just
by using the node labels. On top of that, the final queue where the packet
will arrive, depends not only on the filter which matched the packet, but on
all previous filters which missed that packet. This behavior makes the label-
based node matching of LPG flow filtering node with PRG configured filters
difficult.
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1 graph example {
2 boolean L2EtherClassified {
3 port true[ValidLength]
4 port false[]
5 semantics true { (= L2P.Ethernet (L2.Proto pkt)) }
6 }
7

8 node ClassifyL3 {
9 port ipv4[.L3IPv4ValidHeaderLength]

10 port ipv6[]
11 port arp[.L3ARPValidHeaderLength]
12 port drop[]
13 semantics ipv4 { (= L3P.IP4 (L3.Proto pkt)) }
14 semantics ipv6 { (= L3P.IP6 (L3.Proto pkt)) }
15 semantics arp { (= L3P.ARP (L3.Proto pkt)) }
16 }
17 }

Figure 3.8: Unicorn snippet showing an example node with boolean predicates added
using a semantics attribute

3.7.3 Using predicates for flow analysis

To simplify the embedding of complex functionalities in our model, we use
the approach of associating the outgoing ports on f-nodes with predicates,
and then we use constraint matching. For every f-node, we add attributes
specifying a predicate which will be applied when a packet is forwarded to
the particular outgoing port.

The predicates make it easy to reason about the state of the packet when it
reaches the particular f-node. We create a boolean predicate encoding the
condition of a packet by applying predicates from the selected ports of all
the traversed nodes. We do same with the nodes in LPG to get a boolean
predicate required by the network state. These two predicates can then be
compared to decide if a given LPG node can be embedded or not, and to
determine the additional predicate required to complete the functionality
required by the network stack. We further discuss this approach in chapter 5
in the context of Mapping flows into queues (5.4.3).

This approach provides certain guarantees on the packets reaching a partic-
ular RX queue in the form of aggregated predicates, and these guarantees
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can be used by the network stack to create specialized data paths which can
implement optimizations based on these assurances.

3.8 Conclusion

We have explored the use of dataflow models to capture the capability of the
NIC hardware and the state of network processing such that NIC hardware
capability can be effectively used. We have shown that the simple model
using two building blocks (function nodes and operator nodes) can capture
the state of the network stack, and the c-nodes can be used to model the
configuration space of the NIC hardware.

We have discussed the difficulties in searching the configuration space of
the NIC hardware, and proposed reducing the configuration space by using
a hardware specific oracle to provide the configurations which are relevant
to the current network state.

Dragonet provides a way to systematically explore the NIC configuration,
and this exploration capability further enables us to select NIC configura-
tions based on high-level resource management policies. We have explored
interfaces based on cost functions to implement these policies in a hardware-
agnostic way.

Just configuring the NIC hardware is not enough to take full advantage of
the NIC features. In addition, we need a way to share information regarding
the currently configured hardware capabilities with the network stack. We
have used configured PRG (C-PRG) as a hardware-agnostic and flexible
interface to share the information about the NIC processing capabilities with
a network stack.

In this chapter, we have presented the design of the Dragonet network stack
and how it can provide information about the hardware capabilities in a
systematic way. The next chapter will discuss how this information can be
used to create and run efficient network stack.
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Chapter 4

Dragonet runtime system

The Dragonet provides information about the protocol processing capabili-
ties of NIC hardware by using hardware-agnostic dataflow interfaces. In this
chapter we discuss how we can use the information about the NIC capabil-
ities to generate a specialized network stack which is tailored for current
network state and can benefit from the currently configured hardware capa-
bilities.

We also describe the execution framework we built to implement a host
network stack prototype using information provided by the dataflow model
to determine the required protocol processing. This execution framework
provides a runtime which can adapt the protocol processing based on the
changing application requirements or hardware configuration.

4.1 Background

The idea of a specialized network stack has been around for a while and has
been used with various motivations.

The exokernel [EKO95] approach uses a specialized user space network
stack which optimizes protocol processing based on the application logic to

67
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improve the application performance. The overhead of generalized network
stacks and the performance benefits of user space network stacks which can
exploit application semantics are also studied in the Sandstorm [MWH14]
network stack.

The highly configurable CiAO/IP network stack [BLS12] uses the ideas
from aspect-oriented programming to specialize the stack for embedded
systems by removing unwanted functionalities, hence saving space.

The Unikernel [MS13] approach of MirageOS uses a high-level program-
ming language for the implementation of the OS services, the network stack
and the application logic which can directly run on a VM. It utilizes the
language framework to perform compile-time safety checks and optimiza-
tions (e.g., dead code elimination) on the entire stack including applications,
network stack, and OS services.

The Dragonet approach focuses on the benefits of the capabilities of the
NIC hardware by specializing the network stack based on the guarantees
given by the current configuration of the NIC hardware and the application
requirements.

4.2 Creating a specialized network stack

The previous chapter 3 has introduced the dataflow interface called Configured-
PRG (C-PRG) in section 3.7.1 which captures the packet processing capa-
bilities of the currently configured NIC in a hardware-agnostic way. It also
presented Logical Protocol Graph (LPG) as a way to capture the current state
of the network stack in section 3.3.2. Here, we use the information about
the network stack state from LPG and the information about the hardware
capabilities from C-PRG to create a specialized network stack optimized for
current network state and hardware capabilities.

The information available in the C-PRG and LPG needs to be used by the
network stack to benefit from it. The exact approach for using this informa-
tion depends on the goal and the priorities of the network stack. Here we
present a way to create a specialized network stack which is optimized to
perform well on a multicore CPU system by partitioning the execution of
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the protocol graph into separate components with the help of information
provided by the C-PRG. These components can be deployed on different
cores to exploit the available parallelism between different flows.

As we are interested in the multicore performance of a network stack, we
currently limit our embedding algorithm to use the hardware queues and
filters for partitioning the execution across multiple cores, and ignore other
offloading features.

Fig. 4.1 illustrates how a network stack can be specialized by creating cus-
tomized protocol processing components for each application based on the
application requirements, and the functionalities provided by the hardware
endpoints. We use a simplified LPG (Fig. 4.1b) based on the LPG described
in Fig. 3.1 with two applications each listening on one UDP port (port 7 and
port 11211). For the PRG, we use a simplified C-PRG (Fig. 4.1a), which
is based on the PRG presented in Fig. 3.5c configured with two hardware
filters.

The process of specializing the network stack starts with connecting a copy
of the LPG with each pair of send and receive hardware queues with the
same IDs as shown in Fig. 4.1c. This step ensures that the complete packet
processing will be applied to every packet irrespective of which NIC end-
point the packet may arrive.

Next the specialization process simplifies the embedded LPG by removing
the parts of the graph which can’t be reached by the packets (Fig. 4.1d).
This step relies on information from the configured PRG to work out which
packets will be demultiplexed on which hardware queue. Using this infor-
mation for each RX queue, this step removes unreachable nodes from the
LPG connected with that RX queue.

The reduction step depends on the semantic information associated with
ports of the nodes specifying conditions on the packets traversing that port.
This step creates an expression for each port by aggregating the predicates
from the predecessor ports which a packet may have to traverse to reach the
current port. The expressions for each port will be checked for satisfiability
using an Satisfiability Modulo Theories (SMT) solver. If the expression is
unsatisfiable, then it is assumed that a packet will never traverse that edge
and that particular edge can by safely dropped. Once the edges with unsat-
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isfiable predicates are dropped, then the nodes which are not reachable from
the starting node can also be dropped. We have implemented the necessary
boolean predicate logic using a custom solver that we developed in Haskell.
We also experimented with the Z3 SMT solver [DMB08]. There is signif-
icant room for further optimizations and performance improvements in our
current approach of using boolean solver (e.g., use faster solvers, transform
the problem into simpler problems) and we haven’t fully explored different
options for performance improvements yet.

In our example, the C-PRG from Fig. 4.1a assures that Q1 will only receive
UDP packets with the destination port 7, and hence the LPG instance con-
nected to it can be simplified by removing the processing of all other pro-
tocols and flows, except for the processing required by the flows of App1.
Similarly, the LPG instance connected to Q1 can be simplified by only keep-
ing the processing needed for the flows of App2, leading to the simplified
embedded LPG shown in Fig. 4.1d.

The protocol processing connected with the default receive queue Q0 is not
simplified to ensure correctness. We take this approach to handle corner
cases like handling fragmented IPv4 packets or handling delays in updating
the hardware configuration.

The reduction step of removing unreachable edges and nodes is an opti-
mization, and is not necessary for the correctness of the packet processing
captured by the embedded graph. The only difference is that the reduced
graph may have improved performance due to the simplified protocol pro-
cessing.

Next, the specialization process will prepare the embedded LPG graph for
partition by removing the hardware nodes; it is done by finding the RX and
TX queues and deleting all the nodes before and after them respectively.

4.2.1 Creating partitions

Next, the network stack specialization process will partition the embedded
graph into separate components to meet our security requirements and facil-
itate deployment on multiple cores.
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Each component is assumed to be a self-contained protocol processing unit
with explicit communication channels to other components. These compo-
nents can be deployed on separate cores with their own execution engine
(discussed in section 4.3.1).

Currently, to provide better locality, we have taken the approach of creat-
ing a separate component for each hardware queue-pair, to make sure that
the packets arriving on the RX queue are processed by the same partition.
These partitions can be deployed on different cores. The partitioning step in
Fig. 4.1e shows three separate components, one for each hardware queue-
pair.

In addition to the performance implications, partitioning step is also used to
handle the security constraints implied by having direct access to the NIC
hardware queues. Depending on the capability and configuration of the NIC
hardware, the verification of the addresses of the packet buffers provided to
the NIC hardware queues might be necessary. Ideally, the C-PRG model
should be able to provide enough information to the network stack regard-
ing this, but our current implementation does not include these attributes.
We have taken a conservative approach of not trusting the applications with
direct access to the NIC hardware queues. This conservative approach is
implemented by moving the trusted queue endpoints into the separate pro-
tocol processing components (shown with PThread* in Fig. 4.1e) during
the partitioning step.

Our partitioning algorithm makes the communication explicit by grouping
the edges which are crossing components and providing explicit commu-
nication channels for sending the packets over these cross-partition edges
by inserting additional nodes. These additional nodes are inserted at the
beginning and end of each component. They are responsible for multi-
plexing/demultiplexing the cross-partition edges and enqueuing/dequeuing
packet buffers in the communication channel. The explicit communication
channels needed in our example are shown in Fig. 4.1f.

The implementation of these special nodes is discussed in the next chapter
as part of the execution engine (4.3.1). The implementation of the com-
munication channel uses a shared memory based single producer-consumer
bulk transport library and we discuss the implementation details in the next
chapter (4.3.1).
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Our approach of partitioning the embedded graph makes the placement of
each node and the communication between the partitions explicit. This in-
formation is useful in resource planning based on how much communication
and computation is needed for the deployment of the partitioned protocol
graph.

4.2.2 Alternate approaches

We use the C-PRG to create a detailed execution plan in the form of a parti-
tioned LPG, optimized for deployment on multiple cores. The reader should
note that our partitioning implementation shows one way of using the infor-
mation provided by the C-PRG for the particular optimization goal; this
information can be used in different ways based on different optimization
goals and the security constraints for the deployment of the network stack.
For example, if the security constraints on the deployment are relaxed by
fully trusting the application, then full protocol processing, including hard-
ware queue access, can be pushed into the address space of the trusted ap-
plication. Such deployments will be equivalent to zero copy user space net-
working and can avoid the overhead of additional partitions and communi-
cation channels.

Next, we discuss how our task-based runtime system uses the partitioned
LPG to deploy the customized network stack.

4.3 Runtime system

The motivation for the Dragonet runtime system is to provide a custom con-
trol plane and data plane to assemble the network stack based on the hard-
ware capabilities and the application requirements. We take the approach of
using the dataflow model directly for our packet processing. We implement
an execution engine which can directly run our dataflow model for packet
processing. Our control plane adapts with changes in the resource alloca-
tion plan by directly updating the dataflow models used by the data plane
execution engines.
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Figure 4.2: Overview of the Dragonet runtime system

Fig. 4.2 gives the overview of the Dragonet runtime system. We divide
our runtime system in the control plane (shown on the left side of the
figure) and the data plane (shown on the right side of the figure). The
data plane (4.3.1) is responsible for moving packets between applications
and NIC using execution engines, communication channels and the device-
dependent queue interface. The control plane (4.3.2) is responsible for man-
aging the data planes by setting up and orchestrating them by managing the
execution engines, communication channels and the NIC configuration. The
applications interact with the Dragonet runtime system by using the appli-
cation interface (4.3.4).
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4.3.1 Data Plane

The primary goal of our data plane is to implement the packet processing
specified by the partitioned LPG (P-LPG) efficiently. To facilitate packet
processing based on the partitioned LPG model, we define an execution
model which specifies how to interpret and use the LPG for packet pro-
cessing. We first explain our initial pure dataflow model and the issues we
encountered with it; then we describe our extended task-based dataflow ex-
ecution model which resolves these issues, with its implementation. We
describe the implementation of shared-memory-based bulk transport chan-
nels for providing communication between different execution engines and
the packet transfer.

Pure dataflow model

The pure dataflow model is a simple and intuitive model which works by
creating an acyclic directed graph from the f-nodes and o-nodes of the LPG
and executing it on each packet to provide complete packet processing.

The LPG in this model can be interpreted in two ways. In the forward direc-
tion the edges represent the execution order, implying that once the execu-
tion of a given node is complete, any of the successor node selected by the
enabled port can be executed. In the backward direction the edges represent
dependencies between nodes, implying that every node is dependent on the
execution of all the predecessor nodes.

Execution of the model: The representation of the LPG in a pure dataflow
model can be used to perform all the packet processing needed by the current
state of the network stack. This processing is done by first finding the entry
nodes (nodes without any incoming edges), and executing them on a given
packet buffer. The processing of each node will enable one of its outgoing
ports and hence adding the function nodes pointed by the enabled port into
the execution set. The operator nodes are special in the packet processing as
its processing depends on all of its incoming edges. The packet processing
will continue with the nodes in the execution set, and the packet will be
completely processed when there are no elements left in the execution set.
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Limitations of the pure dataflow model: Even though the pure dataflow
model is sufficient to capture basic packet processing, it shows limitations
in capturing the non-deterministic behavior where a single f-node execution
can trigger multiple executions of the same execution path. One example of
such processing is handling ARP replies. When a single ARP reply arrives,
more than one packet may have to be processed as a response, based on the
number of packets currently waiting for that particular lookup.

Task-based model

We extended our pure dataflow model to a task-based model to address its
limited support for non-determinism. We introduced spawn edges to cap-
ture the capability of a node to start non-deterministic tasks. A spawn edge
originates from a function node and points to a destination node which it
can start as a separate task. During the execution, a node can use the spawn
edge to start the arbitrary number of tasks pointed by the spawn edge.

Execution of the task-based model: This extension also changes the way
our model can be executed. The new model uses a task queue on top of the
packet processing used by the previous model. Each task in a task queue is
a closure of an f-node and an optional packet buffer. The f-node is used to
start the execution, and this f-node can use the packet buffer provided. Each
task is then executed same as a pure dataflow model described earlier, with
an exception that a node with a spawn edge is allowed to push new tasks in
a task queue. This approach of allowing a function node to create additional
packet processing tasks enables us to overcome the limitations of the pure
dataflow model in handling non-deterministic situations, such as processing
ARP replies.

We will discuss the implementation of the task-based execution engine next.

Implementation of the execution engine

The execution engine implements a network stack by running a protocol
graph provided by the Dragonet control thread. We are using a task-based
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execution engine which works by maintaining a task queue, and executing
each task to completion. Each task is comprised of a starting function node
in a protocol graph and an optional buffer.

The execution engine will pick a task from the task queue, and start the
execution with the first function node. The function node is responsible
for implementing the logic and returns which port should be enabled. The
execution engine uses the returned port to determine which nodes need to
be executed, and adds them to the execution set.

The nodes in the protocol graph are implemented as functions in the C lan-
guage for efficiency purpose. These functions take parameters for node con-
text, global state, and buffer handle and return a port identifier based on
which port should be enabled.

The global state is used to maintain the protocol specific information that
will be required by more than one node in a protocol graph. The address of
a local endpoint is an example of the information which will be required by
more than one protocol graph node.

The buffer handle includes a buffer where the packet is stored and the list of
attributes associated with the packet. The attributes can contain information
like packet length, header length, payload offset, etc. These attributes can
be viewed as a way to pass information about the packet to the successor
nodes in the protocol processing.

Implementation of f-nodes: A function node is the most common node
and is responsible for most of the packet processing. A function node is
allowed to access and modify the global state, the buffer handle, and the
buffer containing the packet and its attributes. A function node can allocate
a buffer if there is no valid buffer in the buffer handle, and can free the
buffer. These buffer management capabilities are typically used by initial
and terminal nodes.

A function node can also start new tasks if it has a spawn edge originating
from it by submitting a spawn operation to the current execution system.
This request includes a node context, a spawn edge identifier, priority of the
task, and an optional buffer. The spawn operation can be submitted multiple
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times from a single execution of the function node. The spawn operation
instructs the execution system to create a new task with the node pointed by
the spawn edge as a start node and the buffer handle provided in the spawn
request. This task is then added at top or bottom of the task queue based on
the priority specified in the spawn request.

Implementation of Operator nodes: The operator nodes in the Dragonet
model can be seen as synchronization mechanisms where several packet
processing flows are joined, and based on the results of the input processing
flows, the output flow is enabled. The implementation of these operator
nodes is more complicated as they can be enabled multiple times due to their
multiple inputs but the successor nodes should be executed only once. We
also support short-circuit semantics by enabling the output ports if enough
inputs are enabled to make a decision.

We implement the operator nodes as part of the execution engine which
keeps track of the enabled input edges and performs the boolean operations
on them. The execution engine maintains the output status and the version
number based on the iteration number for each logical operator. It uses
this information to determine if the operator node is already enabled for the
current iteration, and hence does not need to be processed again.

Implementation of the device dependent nodes: An execution engine
may have to deal with NIC specific nodes as these nodes can get pulled
into the embedded LPG as part of the embedding process. These hardware
dependent nodes are typically responsible for interfacing with the NIC for
send/receive packet operations. They are also responsible for implement-
ing the software component of the functionalities which are partially imple-
mented by the NIC hardware.

Example of a device dependent node is a node which interprets the result of
the checksum calculation performed by the Intel i82599 on incoming pack-
ets. The i82599 NIC stores the results into the packet descriptor in a device-
specific format. We have modeled this hardware capability with the node
IPv4Csum_ in our example PRG in Fig. 3.5. In order to use the results of
this checksum calculation in LPG nodes, we need additional device-specific
processing in software to interpret the results provided by the NIC. This
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interpretation is provided by the device dependent node IPv4Csum in our
example PRG in Fig. 3.5.

These device dependent nodes are assumed to be developed with the NIC
PRG and are expected to be provided in the form of device driver library
(shown as DDLib in the Device dependent layer in Fig. 4.2). It is also
assumed that these functions can be executed independently within an RX-
TX queue-pair as execution engines deployed in different protocol threads
can invoke these functions independently on their queue-pairs.

Implementation of special nodes: As part of the partitioning phase (de-
scribed in section 4.2.1), Dragonet introduces special nodes to enable com-
munication between different partitions. These special nodes are responsi-
ble for enqueuing and dequeuing packet buffers in the communication chan-
nel and, if multiple edges cross the partition, multiplexing and demultiplex-
ing them over the communication channel.

The implementation of these special nodes depends on the communication
channel used and may need additional information from the execution en-
gine during runtime. The Dragonet control thread is responsible for pro-
viding the necessary information to the execution engine to enable correct
execution of these special nodes.

Next, we describe the implementation of shared memory based bulk trans-
port channels for providing communication between different execution en-
gines and the packet transfer.

Buffer management

The Dragonet network stack has the buffer allocation and free operations
in its critical path as any f-node can allocate or free the buffer. Also, these
packet buffers need to travel between different partitions which might be
running in a different address space and trust domains. Therefore, we needed
a low overhead and cross process buffer management and communication
system.
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The communication among separate partitions of the graph is implemented
by using a bulk transport library, implemented as a part of the Barrelfish
project [JB14]. This library provides unidirectional shared memory sin-
gle producer, single consumer bulk transport library and is based on URPC
[BALL91] and Barrelfish UMP communication channels [BPR+11].

This communication channel works by registering a dedicated memory pool,
which is used for allocation of fixed size buffers. The dedicated pool and
fixed size buffers reduce the overheads of buffer management.

This buffer management library allows passing a buffer with and without
ownership hence providing security primitives required by the Dragonet
data path.

4.3.2 Control Plane

The main objective for the control plane is to generate and maintain efficient
data plane implementations by using the available information.

We have already discussed how Dragonet generates partitioned LPG as an
execution plan based on the current network state, available hardware fea-
tures and resource allocation policies. In this section, we will focus on how
the Dragonet control plane use partitioned LPG to generate and maintain the
data plane.

The Dragonet control plane is implemented by a single control thread which
oversees the whole execution of the network stack (labeled as Dnet Control
thread in Fig. 4.2). This thread manages the execution engines deployed in
the protocol threads and in the applications using the Data plane manage-
ment mechanisms described below.

Data plane management interface

The data plane management interface allows the Dragonet control thread
to manage partitioned protocol graphs deployed in the execution engines.
These execution engines can be either in a Dragonet protocol thread or in
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the application context. In addition, this interface allows direct manipulation
of the task queue of these execution engines and the configurations of the
communication channels between different partitions. These interfaces are
shown with dotted black line labeled as Data Plane Mng. in Fig. 4.2.

The Dragonet control thread uses the Unix socket channel created for the
application endpoint to communicate the control commands with the appli-
cation. The communication with the protocol threads is easier as they are
implemented in the same process.

The Dragonet control thread can use the data plane management interface
to start and stop the execution engines, and manipulate their task queues by
spawning new tasks directly.

This interface also provides the primitives for creating a node, adding a port
to a node, adding an edge and clearing a graph. These graph operations can
be used to manage partitioned protocol graphs used by the execution engines
in the protocol threads and the applications.

As the Dragonet control thread needs to manage the execution engines and
the partitioned protocol graphs running in the applications, we provide a
library which each application needs to use. This library provides commu-
nication with the Dragonet control thread and implements the Data plane
control interface, allowing the Dragonet control threads manage the ex-
ecution engine in the application. This library is shown with the label
DNetAppCtl in the Fig. 4.2).

The Dragonet control thread manages the use of the communication chan-
nels by providing the appropriate parameters to the special communication
nodes added to the partitioned protocol graphs.

Initialization of the network stack

The first responsibility of the Dragonet control thread is to initialize the de-
vice drivers and the basic network stack. The control thread uses the device
driver library to initialize and configure the device driver in the initial state.
The initial state of the network stack is assumed to have enough hardware
resources to perform basic packet processing. For example, the initial NIC
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configuration should direct all incoming packets to the default RX queue,
and the initial LPG should implement basic packet processing, including
handling of ICMP and ARP packets.

The Dragonet control thread is also responsible for providing a communi-
cation endpoint for all applications which want to use the Dragonet net-
work stack services. As the control path is not in the performance criti-
cal path, we have implemented this communication using the Unix domain
sockets [SFR04]. Applications can connect to the Dragonet control thread
over the Unix domain socket provided by the control thread, and send their
requests using the network flow interface. This Unix domain socket based
communication channel is also used by the application to implement the
Data plane control interface. The Dragonet control thread can use it to send
the control command commands in order to maintain the execution engine
in the application address space.

Maintaining the network state

Once the device driver initialization and communication endpoint creation is
done, then the Dragonet control thread continuously maintains the network
state by performing following steps:

1. It accepts application requests for network flow manipulations. These
requests arrive from the network flow interface (3.5.2).

2. It executes the search to find a good hardware configuration (3.6.2).
3. It uses the hardware configuration and the current network state in the

form of LPG to create a partitioned embedded graph which is used to
generate specialized network stack deployment plan (4.2).

4. The control thread then updates the data plane (4.3.1) across the pro-
tocol threads and applications using the Data plane management in-
terface (4.3.2) with the following steps:
• Deploy the newly created partitions either by starting new pro-

tocol threads or by sending the partitioned protocol graph to an
application for the execution.
• Create new communication channels between the partitions if

necessary.
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• Update protocol graphs deployed in the protocol threads and ap-
plications.

• Update the NIC hardware configuration using the device driver
library.

• Remove the unwanted communication channels.
• Stop the execution of unused partitions.

Currently the Dragonet control thread performs these operations sequen-
tially, and there is further scope for improvement by performing few of these
operations concurrently. As running above operations concurrently has cor-
rectness implications, it would involve careful thinking and analysis before
adding such parallelism into the control thread.

4.3.3 Device driver layer

We have moved the NIC hardware dependent part of our runtime system
into a device driver library which is used by both the control plane and the
data plane to interact with the NIC hardware. The device driver library func-
tionalities can be classified into data plane and control plane categories, and
we have labeled these categories as Q-mng and D-Control respectively
in the Fig. 4.2. If the library function is dealing with packet processing then
we classify it in the data plane, and if the function is dealing with managing
the configuration of the NIC then we classify it in the control plane category.

The interaction between the data plane and the device driver library happens
from the PRG function nodes which were embedded into the LPG including
the RX and TX queue nodes responsible for interacting with hardware queue
endpoints. Their hardware dependent f-nodes can directly call the device
driver library functions for packet handling.

The interaction between the control plane and the device driver library hap-
pens via the NIC configuration suggestions made by the hardware oracle
(outlined in section 3.4.1). The Dragonet control thread uses the device
control functionality of the device driver library (labeled as D-Control in
Fig. 4.2) to set the selected configuration into the NIC hardware.

As the device driver library implements the configuration changes suggested
by the NIC hardware oracle, these two components have to be compatible
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regarding the supported configuration changes. We believe that this require-
ment is reasonable, as both of these components are expected to be devel-
oped together.

We have implemented device driver layers for Intel i82599 and Solarflare
SFC9020 NICs. We have developed our layer by using the Dataplane De-
velopment Kit (DPDK) [int] for the i82599 NIC and the OpenOnload li-
brary [Sol10a] provided by the Solarflare for SFC9020 NIC. The develop-
ment of this layer requires knowledge about multiple components in the
Dragonet network stack. For example, the developer needs understanding
of the hardware capabilities of the NIC, the way these capabilities are ex-
posed by above libraries and it’s implications, what type of configuration
changes and interaction does Dragonet control and data thread require with
the library, and how to safely implement these interactions without compro-
mising the performance.

4.3.4 Application Interaction with Dragonet

The flexibility and adaptability of the Dragonet network stack also affects
the way applications can interact with it.

There are three aspects to using the Dragonet network stack from the appli-
cation perspective that we have covered so far. These include (i) submitting
their requirements using the network flow interface (3.5.2), (ii) adapting to
changes using the Data plane management interface (4.3.2), and (iii) data
plane communications using the shared memory communication channels
(4.3.1). Now, we describe the overall interaction of the application with the
Dragonet runtime system.

Applications communicate with the Dragonet network stack by first con-
necting to the control thread over Unix domain sockets [SFR04]. Once con-
nected, the application can register application endpoints with the Dragonet
network stack. The creation of the application endpoint will include estab-
lishing a shared memory based communication channel between the appli-
cation and the Dragonet network stack. This endpoint can be used for data
plane communications. Once the application endpoint is created, the appli-
cation thread then can use it to create new sockets and bind these sockets
with the network flows using the network flow interface.
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The application request is sent to the Dragonet control thread, which pro-
cesses the request by updating the network state and use this updated state
for the configuration space search, and generation of partitioned protocol
graph to meet the application’s request for the flow. Based on the par-
titioned protocol graph, the control thread determines what changes are
needed in which components of the protocol graph, and sends these changes
using the Data plane management interface. As application endpoints can
receive these changes arbitrarily, they are expected to handle them in an
asynchronous way. Handling these asynchronous events to manage the data
plane execution engine in the application address space is another way ap-
plications interact with the Dragonet network stack.

Sending and receiving packets: Dragonet exposes low-level interfaces
for sending and receiving packets to give full flexibility to the applications.
Once a network flow is bound with a socket on the application endpoint, the
application can use the endpoint to allocate a packet buffer, and send this
packet buffer on the network flow by spawning a send task on the associated
socket with the packet buffer. The packet sending task will be performed by
the execution engine inside the application address space.

Dragonet provides an event handling interface which is used by the applica-
tion threads to check for events on the given application endpoint. The event
can be (i) an internal event implying a Data plane management command
from the Dragonet control thread, (ii) the arrival of a new packet buffer on
one of the sockets associated with the application endpoint, or (iii) no event
implying that the application is free to do some other work. The arrival of a
packet event provides information about which socket endpoint the packet
has arrived for and a pointer to the buffers holding the packet contents and
attributes. The application can free the packet buffer once it has finished
processing it.

4.4 Putting it all together

Here, we will summarize all the components of the Dragonet network stack
to clarify the whole system. The Dragonet network stack has three main
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responsibilities: making resource management decision, specializing and
deploying the network stack, and running the specialized stack. The first
two responsibilities fall into the control plane and are handled by the con-
trol thread, whereas the last responsibility is part of the data plane and is
collectively implemented by all the protocol threads.

The network stack can re-evaluate the current resource allocation plan when
a new request comes either for control flow manipulation or explicitly re-
questing the re-evaluation of the resource allocation plan. The control thread
updates and uses current network state encapsulated in the LPG (3.3.2) and
the capabilities of the NIC modeled by PRG (3.3.4) to re-evaluate the cur-
rent resource allocation plan. This re-evaluation process will start with the
search of the NIC configuration space using the hardware oracle (3.4.1).
The suggestions provided by the oracle are evaluated using the cost func-
tion (3.6.1) to find a single suggestion. This configuration suggestion will
determine the new behavior of the NIC, and this information is then used
to create new specialized network stack (4.2) optimized for the new NIC
behavior and the current network state. The control thread then sends the
updates to the protocol threads about deploying the newly created special-
ized network stack, and the protocol threads take over implementing the data
plane (4.3.1) as using the task-based runtime system.

4.5 Conclusion

We have discussed how the information provided by the dataflow interface
(C-PRG) can be used by the Dragonet runtime system to specialize the net-
work stack for currently configured hardware capabilities and application
requirements.

We have implemented the Dragonet runtime system to realize our ideas.
The Dragonet runtime system can a generate custom control plane and data
plane for a network stack based on the configured hardware capabilities.
This runtime system can also adapt the control plane and the data plane
based on the changes in the resource allocation plans.

In the next chapter, we will evaluate our design and the implementation in
the context of concrete use cases of policy-based queue management.



Chapter 5

Queue management with
Dragonet

5.1 Introduction

Modern NICs are equipped with a large number of hardware queue and
filters. These hardware capabilities are useful resources to distribute the
packet processing on multiple CPU cores and provide Quality of Service
(QoS).

Much recent work addresses the problem of maximizing raw performance
in host networking stacks [JWJ+14, HMCR12, PSZM12, JJ09] by using
the hardware queues and filters to ensure that each packet is processed on
a single core, distributing data structures to avoid contention and batching.
The availability of dedicated hardware queues and hardware filters can also
provide a way to eliminate OS overheads by using techniques such as user
space networking [Sol10a]. Taking these techniques to their logical con-
clusion, the recent research proposes fully decoupling the data plane from
the control plane at the OS level [PLZ+14, BPK+14]. All these approaches
depend heavily on the use of NIC hardware queues to achieve isolation and
high performance.

87
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Efficiently allocating NIC queues across the network flows in a system is
critical to performance and can enable higher degrees of service consoli-
dation. In contemporary systems, however, there is no obvious, rigorous
way to formulate, let alone solve, this problem: every NIC is different, and
offers not merely different numbers of filters, but different semantics and
limits for the filters and flow directors used to demultiplex incoming pack-
ets [SKRK13]. In addition to the diversity in the hardware, the allocation of
these hardware resources also needs to adapt with changing workloads and
changes in the policies used to guide these resource allocation.

Traditional network stacks either limit themselves to simple load balancing
features like Receive Side Scaling (RSS) with a dedicated hardware queue
for each core or leaving the queue allocation to either device driver with
internal policies [PSZM12] or the administrator with external tools [eth].

We use the Dragonet network stack to address this challenge by allocating
NIC queues to flows in a variety of different NIC implementations based
on generic OS policies. We argue that the right place to implement this
allocation decision is not in the NIC driver (as happens today), and certainly
not in the NIC itself. Instead, NIC queue allocation should be performed
in a hardware-independent way by the OS, and specifically by the network
stack. Hence, Dragonet explicitly controls how NIC queues are allocated to
network flows.

Our goal is not to provide a queue allocation solution to meet specific re-
source management policies and requirements. These policies and require-
ments can change significantly over time as application demands and NIC
hardware change. Instead, we are interested in creating the proper abstrac-
tions to formulate the problem, and building a network stack that can sys-
tematically solve it.

In this chapter we demonstrate how our dataflow model helps us with cap-
turing the capabilities of the NIC hardware for filtering the packets to the
proper queue. Then, we show the value of the model in Dragonet, a network
stack that selects NIC configurations that satisfy generic OS policies. In-
stead of hard-coding policies, we express them using cost functions. Using
the Physical Resource Graph (PRG) abstraction and information about the
network state, Dragonet explores the NIC’s configuration space for a con-
figuration that minimizes the cost function. Next, We evaluate Dragonet in
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section 5.6 using a UDP echo server and memcached on two modern high
performance NICs (the Intel i82599 and the Solarflare SFC9020), and two
policies: load balancing and performance isolation for a set of given net-
work flows. Finally, we show that proper NIC queues allocation enables
performance isolation and predictable performance in a portable way. Fur-
thermore, we show that Dragonet finds good NIC configuration solutions
with reasonable overhead to the control plane operations.

We begin with a discussion of our motivation and background for this work.

5.2 Motivation and Background

The work in this chapter is motivated by combined trends in processors (and
associated system software) and networking hardware.

5.2.1 Network hardware

We make two arguments. First, exploiting NIC hardware queues is essential
for keeping up with increasing network speeds in the host network stack.
Second, doing so requires dealing with complex and hardware-specific NIC
configuration.

Speed of networking hardware continues to increase; 40Gb/s adapters (both
Ethernet and Infiniband) are becoming commoditized in the datacenter mar-
ket, and 100Gb/s Ethernet adapters are available. The data rates that com-
puters (at least when viewed as components of a datacenter) are expected to
source and sink are growing.

At the same time, the speed of individual cores is not increasing, due to
physical limits on the clock frequency, supply voltage, and heat dissipation.
As with other areas of data processing, the only solution to handle higher
network data rates in end systems is via parallelism across cores, which re-
quires multiplexing and demultiplexing flows in hardware before they reach
software running on general-purpose cores.
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Fortunately, all modern NICs support multiple send and receive queues, and
include filtering hardware which can demultiplex incoming packets to dif-
ferent queues, typically ensuring that all packets of the same “flow” (suitably
defined) end up in the same serial queue.

Multiple send and receive queues in NICs predate the multicore era: their
original purpose was to reduce CPU load by offloading packet demultiplex-
ing. This also had the useful property of providing a mechanism for per-
formance isolation between flows without expensive support from the CPU
scheduler. However, modern NIC functionality is highly sophisticated and
varies considerably across different vendors and price points.

In this chapter, we only focus on the receive path, where the hardware fil-
tering and multiple queues play a crucial role of classifying and directing
received packets to the appropriate receive queue. Note that the claim here
is not that the transmit case is irrelevant. Instead, managing receive queues
as a system resource is a sufficiently complex problem in itself, and hence,
we are limiting our focus on it.

5.2.2 Diversity and Configurability of filters

The primary challenge in exploiting NIC queues is the diversity of NIC fil-
ters and the configuration complexity. NICs offer a rich and diverse set of
programmable filters for steering packets to hardware queues. For example,
the Broadcom NetXtreme II Family NICs [Bro08] support a small number
of generic filters using bitmask matching, while Intel NICs [Int10b, Int10a]
support a larger number of filters which are less flexible but simpler to con-
figure. In addition, a single NIC can support different types of filters. Here
we revisit the discussion about the Intel i82599 NIC [Int10b] from earlier
chapter (3.3.3) to further discuss the behavior of the filters.

The Intel i82599 NIC exports 128 send and 128 receive queues and supports:

1. 5-tuple filters: 128 filters that match packets based on five fields:
<protocol, source IP, destination IP, source port,
destination port>, each of which can be masked so that it is
not considered in packet matching.
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2. Flow director filters: These are similar to 5-tuple filters, but offer
increased flexibility at the cost of additional memory and latency (they
are stored in the receive-side buffer space and implemented as a hash
table with linked list chains). Flow director filters can operate in two
modes: “perfect match”, which supports 8192 filters and matches on
fields, and “signature”, which supports 32768 filters and the matches
on a hash-based signature of the fields. Flow-director filters support
global fine-grained masking, enabling range matching. These filters
also support priorities to handle the situation where more than one
filter matches.

3. Ethertype filters: these filters match packets based on the Ethertype
field (although they are not to be used for IP packets) and can be used
for protocols such as Fibre Channel over Ethernet (FCoE).

4. a SYN filter for directing TCP SYN packets to a given queue. This
filter can be used, for example, to handle denial-of-service (DoS) at-
tacks.

5. FCoE redirection filters for steering Fibre Channel over Ethernet pack-
ets based on FC protocol fields.

6. MAC address filters for steering packets into queue pools, typically
assigned to virtual machines.

Finally, the Intel i82599 also supports Receive Side Scaling (RSS) [HdB13,
Mic] to spread the incoming traffic on multiple cores by using multiple re-
ceive queue. It works by generating a hash value from the incoming packet
fields and using this hash value to index a 128-entry table with 4-bit values
indicating the destination queue. We will revisit the implications of using
RSS in next section.

In contrast to the Intel i82599 NIC, the Solarflare SFC9020 [Sol10b] NIC
supports 1024 send and 1024 receive queues, 512 filters based on MAC
destination and two kinds of 8192 filters each for TCP and UDP: a full
matching in which the entire 5-tuple is considered, and a wildcard mode
in which only destination IP and port are used. If a packet is matched by
multiple filters, the more specific filter is selected. Moreover, each filter
can use RSS to distribute packets across multiple queues (two different hash
functions are supported).

In our exploration, we have targeted the Flow director filters and 5-tuple
filters in the Intel i82599, whereas we use the 5-tuple filters in both full



92 CHAPTER 5. QUEUE MANAGEMENT WITH DRAGONET

matching and wildcard mode for the Solarflare SFC9020 [Sol10b] NIC.

5.2.3 System software

We now examine the evolution of network stacks and make two observa-
tions: modern network stacks indeed depend increasingly on NIC hardware
to achieve good performance, but there is currently no solution that provides
support for generic OS policies and deals with the complexities of modern
NIC hardware.

RSS: Queue allocation in the NIC

Modern network stacks (and commodity OSes in general) have evolved in-
crementally from designs based on simple NICs feeding unicore CPUs. As
multicore machines became dominant and the scalability of the software
stack became a serious concern, significant efforts were made to adapt these
designs to exploit multiple cores.

However, the difficulty of adapting such OSes while maintaining compati-
bility with existing hardware has limited the extent to which such stacks can
evolve. This, in turn, has strongly influenced hardware trends.

For instance, the most common method for utilizing NIC receive queues is
Receive-Side Scaling (RSS) [HdB13, Mic]. The main goal of RSS is to re-
move the contention point of a single DMA queue and allow the network
stack to execute independently on each core. With RSS, the NIC distributes
incoming packets to different queues so that they can be processed by sep-
arate cores. Packets are steered to queues based on a hash function applied
to protocol fields (e.g., on a 4-tuple of IP addresses and TCP ports). Assum-
ing the hash function distributes packets evenly among queues, the protocol
processing load is balanced among cores.

The key drawback of RSS, as with any other hard-coding of policy into
NIC hardware, is that the OS has little or no control over how queues are
allocated to flows.
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For example, RSS does not consider application locality. Maximizing net-
work stack performance requires packet processing, including network pro-
tocol processing and application processing, to be fully performed on a sin-
gle core. This increases cache locality, ensuring fast execution, and min-
imizes memory interconnect traffic, improving scalability. Hence, perfor-
mant network stacks depend on a NIC configured to deliver packets to the
queue handled by the core where the receiving application resides.

Queue allocation in the driver

The shortcomings of RSS can be addressed by using more flexible NIC
filters, and trying to intelligently allocate queues to flows using a policy
baked into the device driver.

An example of this approach is Application Targeted Receive (ATR)![Int13]
(also called “Twenty-Policy” in [PSZM12]). This is used by the Linux driver
for the Intel i82599, where, transparently to the rest of the OS, the device
driver samples transmitted packets (at a rate of 1:20 by default) to determine
the core on which the application sending packets for a particular flow re-
sides. Based on the samples, the driver then configures the NIC hardware to
steer received packets to a queue serviced by that core.

The high-level problem with driver-based approaches is that the NIC driver
lacks a global system view (available network flows, current OS policy, etc.)
to make good decisions. Instead of using the full information, it will use
heuristics based on hard-coded policies that may create more problems than
they actually solve.

Queue allocation in contemporary stacks

The queue allocation solutions for the specific requirements and policies
have been added to the Linux network stack. For example, Receive Flow
Steering (RFS) [HdB13] in the Linux kernel tries to address the poor locality
of RSS and steer packets to cores on which the receiving application resides.
When using RFS, the network stack keeps track of which core a particular
flow was processed on (on calls to recvmsg() and sendmsg()), and
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tries to steer packets to the queue assigned to that core. RFS without accel-
eration performs the steering in software, where Accelerated RFS uses NIC
filters. In the latter case, drivers need to implement the ndo_rx_flow_steer()
function, used by the stack to communicate the desired hardware queue for
packets matching a particular flow. The driver is required to poll the stack
for expired flows in order to remove stale filters. Currently, three NIC drivers
(for Solarflare, Mellanox, and Cisco silicon) implement this function.

Another example is Affinity-Accept [PSZM12], which aims to improve lo-
cality for TCP connections. The incoming flows are partitioned into 4096
flow groups by hashing the low 12 bits of the source port, and each group is
mapped to a different DMA queue, handled by a different core. The system
periodically checks for imbalances and reprograms the NIC by remapping
flow groups to different DMA queues (and hence cores).

Both of these methods are not without problems. Accelerated RFS operates
on a very simplified view of NIC hardware. As a result, it cannot deal with
the physical limits of the NIC (e.g., what happens when the NIC’s filter table
is full?), and at the same time cannot exploit all NIC hardware features.
Affinity-Accept NIC queue management, on the other hand, targets a single
NIC (the i82599), and cannot be applied to NICs that do not provide the
ability to distribute flows based on the low 12 bits of the source port (e.g.,
Solarflare’s SFC9020).

Perhaps more importantly, both of these techniques specifically target con-
nection locality in a scenario in which all network flows are equal. It is not
possible, for example, to utilize NIC queues to provide performance isola-
tion to specific network flows.

Scalable network stacks

There has been some recent work [JWJ+14, HMCR12] in using NIC hard-
ware queues and filtering capabilities to improve the scalability of a net-
work stack. These efforts focused on improving the poor TCP performance
for small messages and short-lived connections. Unsurprisingly, all of these
works aim for good locality, i.e., ensuring that all processing for a particu-
lar network flow happens on the same core, which requires the use of NIC
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hardware queues and flow steering filters to distribute packets among cores.
MegaPipe [HMCR12] is a based on a redesigned API, and in addition to
splitting up the acceptance of new connections among different cores, it
batches multiple requests and their completion notifications in a single sys-
tem call to improve performance. mTCP [JWJ+14] applies similar tech-
niques to a user space network stack that interacts with applications via a
traditional socket API.

These network stacks show the benefits of NIC hardware queues and filter-
ing capabilities for scalability and application performance. However, they
do not solve the problem of the diversity in NIC hardware capabilities.

Dataplane OSes

Recently, work in "dataplane OSes" such as Arrakis [PLZ+14] and IX [BPK+14]
have proposed radically simplifying the design of the shared OS network
stack. In particular, these systems attempt to remove the OS completely
from the data path of packets. This is achieved using multiple queues, and
adopting a hard allocation of queues to applications.

We believe that this structure will be increasingly compelling for high per-
formance server OSes in the future. For this reason, we orient our work in
this chapter more towards such dataplane-based OSes.

The adoption of dataplane-based designs, however, emphasizes the problem
of intelligent queue allocation. For example, Arrakis [PLZ+14] specifies
a hardware model for virtualized network I/O, called virtual network in-
terface cards (VNICs). VNICs are expected to multiplex and demultiplex
packets based on complex predicate expressions (filters). In contrast to tra-
ditional network stacks, the application is assumed to have direct access to
the NIC DMA ring and establishing the proper filters (both on the send and
the receive path) is not just a performance concern, but the mechanism for
establishing protection across applications running on the system.

Real NICs, however, are not perfect: they have limited numbers of queues,
limited numbers of filters, limited filtering expressiveness, and, as we men-
tioned in section 5.2.2, complex configuration spaces. Hence, in the con-
text of a dataplane OS, the network stack is required to program NIC filters
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based on application requirements and global policies (e.g., which appli-
cations should operate without direct hardware access due to limited NIC
capabilities).

5.2.4 Discussion

Overall, we believe that the OS should be capable of dealing with network
queues analogously to how it deals with cores and memory, since ignoring
NIC queues can lead to problems. In an OS like Linux, for example, it is
not possible to ensure performance isolation for applications that use the
network without exclusively allocating one or more NIC queues to the ap-
plication. In OS dataplanes, the problem becomes more extreme because
protection (e.g., from applications spoofing headers) is achieved by exclu-
sive queue assignment.

Furthermore, as services are consolidated, a single machine is expected to
deal with complicated, diverse, and varying workloads, potentially served
by multiple applications with different requirements. The OS, therefore,
should be able to dynamically assign hardware resources such as cores,
memory, and NIC hardware queues to applications to fulfil these require-
ments.

While well-known techniques exist for allocating cores and memory to ap-
plications, allocating NIC queues poses a significant challenge. For sending
packets this is not a difficult task: the OS can just ensure that the queue is
used exclusively by a single application. For receiving packets, however, al-
locating a queue requires ensuring that particular network flows are steered
into a specific queue by the NIC. Different NICs offer different facilities
for steering packets into queues, making queue allocation a non-trivial task.
One way to perform this task, and how it is done in many cases in prac-
tice, is to manually select a static NIC configuration for a specific workload
(e.g., via ethtool [eth] for Linux). This leads to reduced flexibility in
deployment.

In this chapter, we argue that NICs should be configured by the core OS
network stack based on the network state and given NIC-agnostic policies
about how different network flows share resources. Moreover, this function-
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ality should neither be hidden behind the device driver interface nor left up
to manual configuration.

Dragonet, our prototype network stack that realizes our ideas, is driven by
dataplane OSes as a primary use case, but we argue that NIC queue manage-
ment is a problem common to both dataplane OSes and monolithic kernels,
and the techniques we present are applicable to both.

5.3 Modeling HW Complexity

NIC filtering capability is an example of one of the complex NIC features.
In this section, we show that the Dragonet configuration-node abstraction is
sufficient to capture these complex hardware filters (5.3.1). We also discuss
support from the c-node for incrementally configuring the filters, and the use
of hardware oracles to reduce the configuration space of these filters (5.3.2).

5.3.1 Filter configuration space

We have already discussed dataflow modeling (3.3) and how it can handle
a general configuration space (3.4) in the previous chapter. Here, we use
the configuration nodes (c-nodes) described in earlier chapter (3.3.4), and
we show how we can use them to model the complex configuration space
of the 5-tuple filters (described in 5.2.2) provided by Intel i82599 NIC as an
example.

Our goal is to model the packet filtering capabilities provided by 128 5-
tuple filters provided by the Intel i82599 NIC using the configuration nodes
so that they can be incrementally configured and reasoned about.

Fig. 5.1a shows an example of a receive side of a simplified version of the
unconfigured PRG for Intel i82599 NIC with only 5-tuple filters. The func-
tion nodes (f-nodes) have a white background, operator nodes (o-nodes)
have a gray background, and the configuration nodes (c-nodes) have a turquoise
background. The Q1, Q2, Q3 nodes represent the receive queues of the NIC.



98 CHAPTER 5. QUEUE MANAGEMENT WITH DRAGONET

RxIn p RxC5TupleFilter
queues

default
OR:RxQ0Valid

true

false

OR:RxQ1Valid
true

false

OR:RxQ2Valid
true

false

RxQueue0 out

RxQueue1 out

RxQueue2 out

(a) Unconfigured PRG

RxIn p 5T(UDP,*,*,*,1053)
true

false

RxQueue0 out
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true

false

RxQueue1 out
OR:RxQ1Valid

true

false

RxQueue2 out
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(b) Partially configured PRG after applying configuration 5T(UDP, *, *,

*, 1053)→ Q1

RxIn p 5T(UDP,*,*,*,1053)
true

false

RxQueue0 out
OR:RxQ0Valid

true

false

RxQueue1 out
OR:RxQ1Valid

true
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RxQueue2 outOR:RxQ2Valid
true

false5T(UDP,*,*,*,67)
true

false

5T(UDP,*,*,*,53)
true

false

(c) Configured PRG

Figure 5.1: Example of configuring 5-tuple filter in the Intel i82599 NIC
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Instead of using a naive approach of adding 128 separate c-nodes, each mod-
eling a single filter configuration, we have opted for simplifying the model
by using a single c-node which can recursively replace itself with an f-node
modeling a configured 5-tuple filter and a configuration node itself.

This recursive configuration can be seen in a partially configured PRG (Fig. 5.1b)
in which an f-node 5T(UDP, *, *, *, 1053) and the c-node with name
RxC5TupleFilter have replaced a single instance of c-node with name
RxC5TupleFilter from the U-PRG (Fig. 5.1a) after application of a
single configuration 5T(UDP, *, *, *, 1053) → Q1. The recursive
expansion ends either after applying all available configurations or when all
128 filters are configured.

Fig. 5.1c shows the fully configured PRG after applying two remaining filter
configurations on the RxC5TupleFilter c-node: [5T(UDP, *, *,

*, 67)→ Q2, 5T(UDP, *, *, *, 53)→ Q1].

In our example (Figures 5.1c and 5.1a), configuring RxC5TupleFilter
adds three 5T nodes. Hence, for all new edges the source node can either
be the RxIN (since there is a RxIN → RxC5TupleFilter edge in the
unconfigured graph) node, or a 5T node. Similarly, the destination node can
either be one of the OR:Qx nodes, or a 5T node.

5T nodes represent an f-node implementing a configured 5-tuple filter of
the i82599. A 5-tuple consists of the protocol, the source/destination IP ad-
dress, and the source/destination port. In our example, the 5-tuple filters
only specify the protocol and the destination port, leaving the other fields
masked so that they can match all incoming packets for a given port and pro-
tocol, implementing a listen port. The example PRG models a NIC where
UDP packets with destination ports 53 and 1053 are steered to Q1, UDP
packets with destination port 67 are steered to Q2 while all other packets
end up in the default queue, Q0.

Dragonet uses boolean logic for reasoning. Each f-node port is annotated
with a boolean predicate which describes the properties of the packets that
will enable the port. Our expressions are built with atoms that are tuples of
a label and value. The label typically corresponds to a packet field. For ex-
ample, the predicate for the true (T) port of the filter node ‘5T(UDP, *,

*, *, 53)’ is: ‘(EtherType, IPv4) AND (IPv4Prot, UDP)
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AND (UDPDstPort, 53)’. Note that it is not possible to have a differ-
ent value for the same label. Hence, we can simplify expressions such as
‘(UDPDstPort, 53) AND (UDPDstPort, 67)’ to false.

Just modeling the configuration space of these filters is not enough, and we
need a way to select a few interesting configurations based on the current
state of the network stack. We will discuss that next.

5.3.2 PRG oracle implementation

The number of hardware filters and the configuration space associated with
these filters can be huge, making exhaustive exploration of this space unre-
alistic. We have presented the hardware oracle as a solution to this problem
in the previous chapter (3.4.1), and here we show an example of hardware
oracle in the context of queue management.

The hardware oracle provides a way to systematically reduce the configura-
tion space by proposing only those configurations which will have an effect
on the current network state, by using the NIC specific knowledge.

As we are focusing on the queue management, our oracle implementations
for the Intel i82599 and Solarflare SFC9020 NICs generate configurations
that map the given network flow to different queues by adding appropriate
filters.

We give an example of potential suggestions generated by a simplified In-
tel i82599 NIC hardware oracle based on an input of a single UDP flow
request and three hardware queues in Fig. 5.2. We used the flow Flow
(*:*, 127.0.0.1:1053, UDP) as the input which requests for all
UDP packets with 127.0.0.1 as destination IP, and 1053 as destination
port, and no constraints on the source IP and the source port.

This example illustrates how the oracle can use the information about the
flow to generate the most relevant configurations, hence reducing the overall
search space significantly.

The hardware oracle is responsible for meeting the constraints on the hard-
ware while generating these suggestions. It needs to ensure that the type of
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Flow(*:*, 127.0.0.1:1053, UDP) ->
[
5T(*:*, 127.0.0.1:1053, UDP, Q0),
5T(*:*, 127.0.0.1:1053, UDP, Q1),
5T(*:*, 127.0.0.1:1053, UDP, Q2),
5T(*:*, *:1053, UDP, Q0),
5T(*:*, *:1053, UDP, Q1),
5T(*:*, *:1053, UDP, Q2)

]

Figure 5.2: Example of configurations suggested by hardware oracle for a single
flow request.

filters to be used can actually support the suggested configuration. For ex-
ample, the Intel i82599 NIC only supports global masking for flow director
filters, which implies that all flow director filters have the restriction of hav-
ing wild-cards on the same fields. Hence, the hardware oracle should either
generate the first three (with two fields masked) or the last three suggestions
(with three fields masked), but not a mix of them.

Similarly, the Solarflare SFC9020 NIC allows wild-card matching, but only
on the source IP and source port fields, and hence the hardware oracle for
SFC9020 NIC should not generate the last three suggestions in above Fig. 5.2.

The hardware oracle can also apply some basic NIC specific optimizations.
For instance, the i82599 oracle will only use flow director filters if all the
5-tuple filters are used (see section 5.2.2).

5.4 Policy-based queue management

Our high-level goal is to offer policy-based queue management in a hardware-
agnostic way. The Dragonet modeling approach provides a capability to
reason about the NIC filters and queues in a portable way. However, we still
need to figure out which are the important and active flows needing hard-
ware resources. We also need to interpret the resource management policies
provided to the system in the context of active flows and the current NIC
configuration to perform policy-based resource management.
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Here we discuss the approaches we have taken to understand the application
requirements, and the resource allocation policies in a hardware-agnostic
way.

5.4.1 Capturing application requirements: Active network
flows

The first step for implementing policy based queue management is under-
standing which flows are active and important from an application’s per-
spective.

Determining which flows are active is not trivial. Even for connection-
oriented protocols like TCP, the fact that the connection exists does not mean
that the connection is active (i.e., packet exchange might be minimal). Ac-
tive network flows can be identified using traffic monitoring mechanisms, or
registered directly by the applications.

We believe that the application developers are in the best position to decide
which flows are active based on the application logic. Hence, we push this
responsibility to the application developers by letting them specify what
flows are active. We are using Network flow abstraction (described in the
previous chapter 3.5.2) to gather application requirements for the network
flows, and applications can use an additional attribute to mark the flows
active. If more fine-grained metrics are needed (e.g., considering the traffic
rate of each active network flow, rather than just whether it is active or not),
our queue management algorithms can be easily adapted accordingly.

We have pushed the responsibility of specifying the active flows to the ap-
plication, and we focus on selecting an appropriate NIC queue configuration
for a given set of active network flows.

5.4.2 Implementing queue allocation policies

One approach for managing queues is to implement NIC- and policy-specific
queue allocation algorithms. While it is possible to do so (easily) in Drag-
onet, such a scheme is problematic. Firstly, it requires that the policy imple-
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menter understands the NIC operation and configuration details. Secondly,
each allocation algorithm that implements a given policy would have to be
rewritten for different NICs. Finally, such hard-coded allocation algorithms
are difficult to compose. In a typical setup, multiple applications are running
in the system, each contending for NIC queues, and each with a potentially
different policy. In such a scenario individual application policies need to
be combined with global policies.

A better solution is to decouple the policy specification from the details of
NIC hardware. To do this we: (i) build NIC models that fully describe hard-
ware operation and configuration, and (ii) describe queue allocation policies
in NIC-agnostic manner. We have already discussed building NIC models
(5.3), and here we focus on describing the queue allocation policies.

We express user policies via cost functions (5.4.4) that assign a cost to a
specific queue allocation, given the set of active system flows in the sys-
tem (5.4.1). Users can select an existing cost-function, or submit their own.
Writing a cost function does not require any knowledge about the NIC. Fur-
thermore, cost functions can be composed to form complex policies. A
system-wide cost-function, for example, can split the cost into two parts:
one representing the global queue allocation policy, and one representing the
application policy. The latter can be determined by calling an application-
specific cost-function.

Using a PRG and a cost function, Dragonet searches the NIC’s configuration
space for a configuration that minimizes the cost. As we discus in previous
chapter (3.4) the configuration space is very large, rendering naive search
strategies impractical. As a result, Dragonet applies several techniques to
efficiently search the configuration space. We have already discussed the
use of hardware oracle to reduce the configuration space (5.3.2). In addition,
Dragonet uses qmaps (5.4.3) to simplify the execution of a cost function, and
incremental search to support incremental changes in the state.

5.4.3 Mapping flows into queues

Ideally, the cost functions are expected to analyze the embedded LPG (dis-
cussed in the section 3.7.2 of previous chapter) graph which models how
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LPG (representing required network processing) will be executed on top of
configured PRG (representing the NIC configuration). But as the embedding
operation is expensive, it is not ideal to perform it for every configuration
suggested by hardware oracle.

We have taken a middle ground by making an assumption that all application
requests are limited to flow manipulations and the hardware configuration
modifications suggested by the hardware oracle are also related to the flow
manipulations. We exploit these restrictions by generating a representation
of how flows are distributed in hardware queues directly from the NIC hard-
ware configuration. We call this flow distribution representation as Qmap.
This optimization allows us to avoid performing the whole embedding for
each potential NIC configuration suggested by the hardware oracle.

We can compute the flow mapping as follows. First, we apply the change
to the configuration and use it to configure the PRG. Given a configured
PRG, we can determine the queue on which a flow will appear using a flow
predicate and a depth-first search starting from the source node (e.g., RxIn
in Fig. 5.1c). For each of the flow’s activated nodes, we compute the port
that will be activated and continue traversing the graph.

In f-nodes, we determine the activated port by checking the satisfiability of
the conjunctions formed by the flow predicate and the port predicates. We
assume that the flow predicate contains enough information to determine
which port will be activated (i.e., for each flow predicate, only one port
predicate will be satisfiable). We had no issues with this assumption. Al-
though boolean satisfiability is a NP-complete problem, in practice the flow
and port expressions contain a small number of terms for this to become a
restriction.

For o-nodes, we check the incoming edges and determine the activated port
using the usual operator semantics. For example, in an OR node, the true
(false) port is activated if the flow appears in the true (false) edge of one
(all) operand(s). Note that for each operand, the flow can appear only on
one edge (either true or false).

Computing the flow mapping dominates search execution time, and the
method described above performs redundant computations. To improve
search performance, we incrementally compute the flow mapping by main-
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taining a partially configured PRG across search steps. Applying a config-
uration value to a c-node results in the c-node being removed. Applying
a configuration change to a c-node maintains the c-node and results in a
partially configured PRG.

The example of a configuration change is “insert a 5T(UDP, *, *, *,
1053)→ Q1 filter”. Applying this change to the graph of Fig. 5.1a results
in the partially configured PRG of Fig. 5.1b.

To incrementally compute the flow mapping, we maintain information about
how active flows are mapped in node ports in the partially configured graph.
In Fig. 5.1b, for example, we can compute what flows match the T port
of 5T(UDP, *, *, *, 1053) (and will consequently reach Q1) and
what flows match the F port. Note that c-nodes act as barriers, because we
cannot compute flow mappings beyond them.

When an incremental change is applied, we propagate flow information to
each newly inserted node. If the configuration change is a replacement, we
recompute flow mappings for the affected nodes and propagate changes. As
we show in our evaluation (5.6.5), incrementally computing the flow map-
ping leads to a significant performance improvement for the search algo-
rithm.

5.4.4 Specifying policies with cost functions

Next, we discuss expressing queue allocation policies via cost functions that
operate on a mapping of flows onto queues. We have discussed the role
of the cost functions in evaluating the NIC configurations in the previous
chapter (section 3.6.1), and here we focus on providing an example of it.

In a deployment of our system, we expect that some inbuilt policies will be
provided to select from, as well as an interface that allows system adminis-
trators to give their own. We examine two policies as examples.

First, load balancing aims to balance the flows to the available queues. This
policy is expressed easily using a cost function: we compute the variance of
the number of flows in each queue.
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Algorithm 1: Cost function for performance isolation policy
Input : The available queues Qs and flows F
Input : K queues assigned to HP flows
Input : A function isHP() to determine if a flow is HP
Input : The flow mapping fmap
Output : A cost value
// determine HP and BE flows
(FHP , FBE)← partition F with isHP() function
// determine queues for each flow class
QsHP ← the first K queues from Qs
QsBE ← the remaining queues after K are dropped from Qs
// are flows assigned to the proper queues?
OKHP ← ∀f ∈ FHP : fmap[f ] ∈ QsHP

OKBE ← ∀f ∈ FBE : fmap[f ] ∈ QsBE

if (not OKHP ) or (not OKBE) then
return CostReject 1

BHP ← compute balancing cost of FHP on QsHP

BBE ← compute balancing cost of FBE on QsBE

if FHP is empty then
return CostAccept BBE

else if FBE is empty then
return CostAccept BHP

else return CostAccept BHP +BBE

Second, we consider a policy that offers performance isolation for certain
flows. We distinguish between two classes of flows: high-priority (HP) and
best-effort (BE) flows. Following the data plane model, each class is served
by an exclusive set of threads, each pinned on a system core, each operating
on a single DMA NIC queue. To ensure a good performance to the HP
flows, we allocate a fixed number of queues to be used only by these flows
and leave the rest of the queues for the BE flows. As a secondary goal,
each class provides its own cost function for how flows are to be distributed
among the queues assigned to the class.

This example also illustrates the composability of cost functions, where each
class may provide its own cost function (in this example we use load bal-
ancing) while a top-level cost function describes how flows are assigned to
classes.
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The cost function for this policy is also simple. Its implementation is 31
lines of Haskell code 1, and its pseudocode is presented in Alg. 1. It rejects
all solutions that assign flows to queues of different classes, and returns an
accepted solution with a score equal to the sum of the balancing cost for
each class.

In our experience, cost functions, although in many cases small and concep-
tually simple, can be very tricky to get right in practice. The complexity in
writing cost function comes from decisions like which configurations should
be immediately accepted or rejected and how much penalty should be given
to slightly undesirable configurations. Operating on the Dragonet models,
however, considerably eased the development process because we could ex-
periment and build tests for our cost functions without the need to execute
the stack.

5.4.5 Searching the PRG configuration space

We have discussed how the policy-based resource management problem can
be transformed into a search problem using cost functions to evaluate NIC
hardware configurations in the previous chapter (section 3.6.2). Here we
will show how we can search the PRG configuration space for a configura-
tion that minimizes the cost function.

Search algorithm

We use a greedy search algorithm, which starts with a minimal configuration
without any application-level flows and accepts a set of flows and a cost
function as input. As the applications are expected to request a network
service using the network flow interface (3.5.2), most LPG manipulations
and resource allocation happens at the granularity of a flow. Hence, we use
flow as a basic unit in our search for the configuration.

We opted for a greedy strategy due to its simplicity and because it can be
applied incrementally as new flows arrive (see section 5.4.5). A simplified

1measured using David A. Wheeler’s ’SLOCCount’
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Algorithm 2: Search algorithm sketch
Input : The set of active flows Fall

Input : A cost function cost
Output : A configuration c
c← C0 // start with an empty configuration
F ← ∅ // flows already considered
foreach f in Fall do

// Get a set of configuration changes
// for f that incrementally change c
CCf ← oracleGetConfChanges(c, f)
F ← F + f // Add f to F
find cc ∈ CCf that minimizes cost(PRG, c+ cc, F) c← c+ cc
// Apply change to configuration

version of our search is presented in Alg. 2, in which each step operates on
a single flow (f ) and refines the configuration from the previous step (c). At
each step, we call the oracle to acquire a new set of configuration changes
(CCf ) that incrementally modify the previous configuration. A configura-
tion change can be applied to a configuration to form a new configuration
(cc + c). We select the configuration change that minimizes the cost of the
current set of flows (F ), update the configuration and continue until there
are no more flows to consider.

Depending on the problem, a greedy search strategy might not be able to
reach a satisfactory solution. To deal with this issue, we allow cost functions
to return whether the solution is acceptable or not in their cost value. An ac-
ceptable solution always has a lower cost than an unacceptable solution. If
after the greedy search the algorithm is not able to reach an acceptable solu-
tion, algorithm “jumps” to a different location in the search space and starts
again by rearranging the order of the flows. To minimize jumps, we support
a heuristic where cost functions are paired with an additional function to
sort the flows before the search algorithm is executed.
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Incremental search

The above algorithm operates on all active flows. As flows come and go in
the system, we need to consider that the optimal configuration might change.
A naive approach to deal with added/removed flows would be to discard
all state and redo the search. This approach, however, induces significant
overhead and does not scale well as the number of flows increase. We can
reduce this overhead by optimizing the search to work incrementally to deal
with flow arrival and removal.

Adding flows is simple in the greedy search algorithm: we start from the
current state and perform the necessary number of iterations to add the new
flows. If an acceptable solution is not reached, we rearrange the flows (ap-
plying the sorting function if one is given) and redo the search.

Removing flows is more complicated to deal with. One approach would be
to backtrack to a search state that does not include any removed flows, and
incrementally add the remaining flows in the system. Because this can lead
to large delays, we remove flows lazily instead.

As can be seen in Alg. 2, each flow is associated with a configuration
change. When this change is applied to the PRG, a new set of nodes are
added to the graph. When a flow exits the system, we maintain the config-
uration as is, and mark the configuration change that was paired with the
removed flow as stale. This approach results in the nodes added by the con-
figuration change to remain in the PRG, even though the corresponding flow
was removed.

At some point, we need to remove the stale configuration changes. To do
that we can backtrack the search as mentioned above. As an optimization,
we allow oracles to repurpose the graph nodes that are associated with stale
configuration changes when new configurations are needed. To support this,
we define special configuration changes called replacements. In our current
prototype, replacements are implemented by changing the predicates of the
generated nodes for the replaced configuration change, but not the graph
structure. The network stack can also periodically request to re-evaluate the
queue allocation from scratch to flush all state configuration changes.

If the NIC does not have enough queues or filters to handle the all the flows
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then the extra flows will be handled by the default queue, and then they will
be demultiplexed by software to the proper application endpoint. The flows
in default queue may get promoted to dedicated queue in future based on the
availability of the resources when the network stack decides to re-evaluates
the queue allocation plan from scratch.

5.5 Implementation

While it is possible to implement our queue management in an existing
network stack (e.g., in Linux we can maintain all the needed information
externally and use ethtool [eth] to update the hardware filters), we use
Dragonet for our implementation because all the necessary abstractions al-
ready exist as first-class citizens, and Dragonet also allows us to customize
the network stack.

Dragonet is written in Haskell and C: the Haskell code is responsible for
implementing the logic while the C code implements low-level facilities
such as communication with the NIC drivers and stack execution. We have
already discussed the runtime of our stack in detail (4.3), and we summarize
the relevant parts of the implementation here.

Dragonet runs in user space, and spawns a control thread and a number
of protocol threads, each operating on a different receive/send queue pair.
In each of these queue pairs, Dragonet connects a separate instance of the
software stack implementation (i.e., the LPG). This approach ensures that
all processing of a single packet happens on the same core. It also allows
specializing the LPG implementation based on the properties of the NIC
queue that it is attached to. For example, if a queue is configured so that
no packets for a particular application endpoint are received, we remove the
relevant nodes for steering packets in this endpoint from the LPG instance
connected to that queue.

The LPG is transformed from Haskell to a C data structure and sent from
the controller thread to the protocol threads. It is executed in the protocol
threads by traversing the graph and calling C functions that correspond to f-
node and o-node functionality. Our current prototype supports UDP, IP, and
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ARP. All communication between Dragonet threads and application threads
is done via shared memory queues.

The Dragonet driver for each NIC needs to implement: a PRG, its oracle,
the shared memory queue for communication with Dragonet threads, and a
function that accepts a PRG configuration and configures the NIC. We have
implemented drivers for the Intel i82599 and the Solarflare SFC9020 NICs.
The first uses Intel DPDK [int] while the second uses OpenOnload [Sol10a].

5.6 Evaluation

In this section, we evaluate our system. We investigate the performance
benefits of using Dragonet smart queue allocation capabilities. We specif-
ically examine the performance effect of enforcing performance isolation
for specific client flows in a memcached server (5.6.3). Next, we quantify
the search overhead for Dragonet to find an appropriate NIC configuration
(5.6.5).

5.6.1 Setup

As a server, we use the Intel Ivy Bridge machine with two sockets, and
ten Intel Xeon E5 cores per socket (hyper threads disabled), and 264GB of
total RAM. The server is running Linux (kernel version 3.13). The server is
equipped with an Intel i82599 [Int10b] and a Solarflare SFC9020 [Sol10b]
NIC.

For load generators (clients), we use different multicore x86 machines (with
the same software as the server) using an Intel i82599 [Int10b] NIC to con-
nect to the server over a 10GbE network. We always use the same allocation
for client threads in the load generators to reduce the variance of the applied
workload for each run.

Dragonet runs in its own process context (separate from applications) in
user space using one thread per NIC queue (for polling NIC receive queues
and application send queues), and one controller thread that runs the solver.
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We allocate ten cores to the 11 Dragonet stack threads (and subsequently
ten NIC queues), and the remaining ten cores to the server application. Al-
though the protocol threads are not required to have an exclusive core, we
do this because our queue implementation used for communication between
the application and the protocol threads supports only polling and cannot
block. This limitation of polling can be overcome by more engineering to
either delivering the interrupt notifications to the protocol threads, or some
other notification mechanisms which can reliably inform protocol threads
about arrival of new packets in their hardware queue.

5.6.2 Basic performance comparison

To put Dragonet’s performance in perspective, we start with a comparison
to other network stacks. We do not claim that Dragonet has the best per-
formance. Our goal is to show that Dragonet has reasonable performance
under the same conditions, and exclude the possibility that the benefits we
report are artifacts of Dragonet’s poor performance. To that effect, we are
using simple resource management policy of load-balancing NIC resources
in which flows are evenly distributed across queues policy for Dragonet and
RSS for the other stacks.

We use a UDP echo server with ten threads, and generate load from 20
clients running on different cores on four machines. Each client runs a net-
perf [netc] echo client, configured to keep 16 packets in flight.

The results are presented in Fig. 5.3 for Solarflare SFC9020 NIC and Fig. 5.4
for the Intel i82599 NIC. We show boxplots for mean latency and throughput
as reported for each of the 20 clients, using 64 and 1024 byte packets.

We compare Dragonet (DNet) against the Linux kernel stack (version 3.13)
(Linux) and the high-performance Solarflare OpenOnload [SC08] network
stack (Onload) using the Solarflare SFC9020 NIC, which we configure for
low latency. We use Linux kernel stack as our baseline. The OpenOnload is
a user-level network stack that completely bypasses the OS in the data path
and can be transparently used by applications using the BSD sockets system
calls.

The Linux network stack has the worst performance. For example, for 1024
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Figure 5.3: Comparison of echo server performance on the Solarflare SFC9020 NIC
for different network stacks

bytes we measured a median latency of 1.14 ms and a median throughput of
16.3K transactions/s across clients. Also, the Linux network stack perfor-
mance differs based on underlying NIC. For example, for 1024 bytes, clients
observe 15K throughput on SFC9020, whereas they observe twice through-
put (30K) on i82599. We believe that this is due different device drivers
implementing optimizations like batching by second guessing application
requirements.

Fig. 5.4 presents results of the Onload userspace network stack (Onload) on
the SFC9020 NIC as a representative for high-performance network stacks.
Unfortunately, we do not have an equivalent userspace solution for i82599
NIC. For Onload with 1024 bytes messages, we measured a median latency
of 453 µs, and a median throughput of 36.6K transactions/s across all clients.
The aggregate throughput of all 20 clients for Onload is 803K transactions/s,
and the total transfer rate is 6.6 Gbit/s. These observations show that the
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Figure 5.4: Comparison of echo server performance on the Intel i82599 NIC for
different network stacks

Onload userspace network stack can achieve more than twice throughput by
using the NIC hardware properly and optimizing the network stack for the
NIC hardware.

For Dragonet on the SFC9020 NIC, we measured a median latency of 366 µs,
and a median throughput of 46.3K transactions/s across all clients. The ag-
gregate throughput of all 20 clients for Dragonet is 878K transactions/s, and
the total transfer rate is 7.2 Gbit/s. Onload and Dragonet perform signifi-
cantly better than Linux mainly due to bypassing the OS in the data path.
Dragonet and Onload have similar performance. For 1024 byte requests,
Dragonet outperforms Onload, while the reverse is true for 64-byte requests.

We also observed very similar throughput and latencies on the Intel i82599
NIC for Dragonet. This observation shows that, unlike the performance
of the Linux network stack which can differ by 100% between these two
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NICs, the Dragonet network stack can achieve consistent performance for
both NICs.

5.6.3 Performance isolation for memcached

In this section, we evaluate the benefits of smart NIC queue allocation us-
ing a (ported to Dragonet) UDP memcached server as an example of a
real application. We consider a scenario in which a multi-threaded mem-
cached [Dan13] serves multiple clients (e.g., web servers), and we want to
prioritize requests from a subset of the clients that we consider high-priority
(HP clients). We use the performance isolation cost function described in
section 5.4.4 to allocate four out of ten NIC queues exclusively to HP clients.
The memcached thread on queue-0 (which is the default queue) maintains a
hash table to detect new flows and notify Dragonet of their presence.

Our experiment is as follows: we start a multi-threaded memcached server
with ten threads exclusively using ten of the server’s cores. We apply a sta-
ble load from two HP clients, and 18 best-effort (BE) clients, each with
16 flows, resulting in a total of 320 flows. We generate the load using
memaslap [Dat13], a load generation and benchmark tool for memcached
servers.

After 10 s we start a new BE client, which runs for 52 s. After the BE client
is finished we wait for 10 s and start a new HP client, which also runs for
52 s. Each of the new clients is added as new flow, and the server triggers
a search. We collect aggregate statistics from each client (mean latency and
throughput), and show results for 1024 and 64 byte server responses for both
NICs in Fig. 5.5 and Fig. 5.6 respectively. We use 10/90% Set/Get operation
mix.

Each plot includes: (i) the performance of the workload under a load-balancing
policy (Bal) for reference, (ii) the performance of the workload under the
performance isolation policy (Isolated), (iii) the performance of the added
BE client (+BE), and (iv) the performance of the added HP client (+HP).
For the performance isolation policy, we use two different boxplots in our
graphs: one that aggregates the HP clients (green color, median marked
with triangles), and one that aggregates the BE clients (blue color, median
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Figure 5.5: Evaluation of memcached using 1024 byte messages with a priority cost
function on Intel i82599 NIC and Solarflare SFC9020 NIC using ten queues.

marked with circles). For the load-balancing policy, we use one boxplot
(black color, median marked with ’x’) for all clients.

As an example, we consider the case of the Intel i82599 NIC for 1024 byte
requests. Under a load-balancing policy, the median average latency across
clients is 342 µs, the median throughput is 46.6K transactions/s, and the ag-
gregate throughput is 927.5K transactions/s. Under the performance isola-
tion policy, HP clients achieve a median latency of 246.5 µs (27% reduction
compared to balancing) and a median throughput of 65.6K transactions/s
(41% improvement compared to balancing). Furthermore, newly added HP
flows and BE flows maintain the same level of performance as their corre-
sponding classes in the stable workload.

For all cases, Dragonet queue allocation allows HP clients to maintain a
significantly higher level of performance via a NIC configuration that is the
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Figure 5.6: Evaluation of memcached using 64 byte messages with a priority cost
function on Intel i82599 NIC and Solarflare SFC9020 NIC using ten queues.

result of a NIC-agnostic policy. To the best of our knowledge, no other
network stack enables this.

5.6.4 Impact of adding a dynamic flow

We also instruct memaslap clients to provide results for latency and through-
put for each second (the minimum possible value). Fig. 5.7 shows our re-
sults for 64 byte requests, focusing on adding a HP client. It shows median
throughput and latency for all clients in the initial workload, and the indi-
vidual throughput and latency measurements for the new HP client. The
initial latency of the HP client is high (12.6 ms for i82599 and 4.5 ms for
SFC9020) and is omitted from the graphs for clarity. During the addition
of the new client, performance of all clients drops for one second (sampling
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Figure 5.7: Impact of adding a HP client when using 64-byte requests

period), but it quickly stabilizes again. We attribute these delays to the Drag-
onet solver executing and contending with the remaining Dragonet threads,
and the time it takes to pass the new LPG graph to the protocol threads after
a new configuration is found. We believe that careful engineering can elim-
inate the majority of these overheads. For example, in many cases, the LPG
graph does not change across different configurations, so it is not necessary
to reconstruct it in the protocol threads.
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Basic Incremental flow map computation
flows full full +1 fl. +10 fl. -1 fl. -10 fl.
10 11ms 17ms 2ms 22ms 9 µs 23.7 µs
100 1.2 s 0.6 s 9ms 94ms 74 µs 117 µs
250 13 s 4 s 21ms 219ms 190 µs 277 µs
500 76 s 17 s 43ms 484ms 382 µs 548 µs

Table 5.1: Search overhead for Intel i82599 PRG using ten queues

5.6.5 Search overhead

In this section, we examine the search overhead, i.e., how long does it take
Dragonet to find a solution. For each possible new configuration given by
the oracle, Dragonet computes how flows are mapped to queues (see section
5.4.3), which dominates the search cost.

Table 5.1 shows the search cost for a varying number of flows (ranging from
10 to 500) when using ten queues on the Intel i82599 PRG for the balanc-
ing cost function. The Basic column shows the cost of finding a solution
without incrementally computing the flow mappings. All results in subse-
quent columns use incremental flow mappings computation. They show the
cost of computing the solution from scratch (full), but also the cost of in-
crementally adding (+1/+10 flows) and removing flows (-1/-10 flows). For
example, it takes 484 ms to find a solution for 10 new flows added when the
system has 500 flows. Because we apply a lazy approach, removing flows
has a small overhead.

The biggest challenge of our approach is reducing the search cost, which is
not an easy problem. Our results show that incrementally computing flow
mappings, not only allows to efficiently add and remove flows with small
overhead, but also significantly improves the full computation because in-
formation is kept across search steps. The other approaches which use some
properties of the flow to avoid using a solver for incorporating flows may
work better, and we currently leave them for future exploration.
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5.6.6 Discussion

Overall, our evaluation shows that Dragonet offers significant benefits by
automatically configuring NIC queues. But, there is clearly a tradeoff: the
search overhead. In general, the number of flows and the rate of changes in
the workload determine the applicability of our approach. Considering two
extremes, our system is well-suited for coarse-grained machine allocations
in data centers for applications whose execution spans minutes, but cannot
deal with load spikes in the order of a few milliseconds.

There are two aspects of the search overhead: constants and scalability in the
number of flows. In this chapter, we focused on the latter and showed that
incrementally computing the necessary information can significantly allevi-
ate the overhead. We believe that there is significant room for improvement
in both of these aspects. On one hand, we use a basic search algorithm that
can be significantly improved. On the other hand, our profiling showed that
more than 10% of the search execution time goes to basic operations (e.g.,
finding successors and predecessors) in the functional graph library [Erw01]
we use. Moreover, more than 10% of the time goes to predicate computa-
tion done with our suboptimal library, even though we use Haskell’s mutable
hash tables [Col, LPJ94] to cache predicates.

We also note that while using Haskell for our prototype allowed us to rapidly
develop our models and system, performance in many cases can suffer.

5.7 Conclusion

In this chapter, we argue for the increasing importance of exploiting NIC
queues and filtering capabilities for scalable performance. We explore the
diversity of NIC filters and the complexities of managing them, and we show
a need for hardware agnostic approach to manage the queues and filters.

We present a policy-based queue management solution based on the Drag-
onet approach of using dataflow models to handle NIC complexity in a
hardware-agnostic way. We show that the configuration node abstraction
provided by the Dragonet can handle the complexities presented by the NIC
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filters. We show that the cost function abstraction can be used to provide
high-level policies in a portable way by implementing separate cost func-
tions for load-balancing and performance isolation. We also present Qmaps
and incremental search as the optimizations to allow Dragonet to manage a
large number of flows.

We describe the implementation of Dragonet, which can use both Intel’s
DataPlane Development Kit and Solarflare’s OpenOnload framework. We
present experimental results using microbenchmarks and memcached for
Dragonet’s queue management, and we show the performance benefits of
our approach by implementing and evaluating a load-balancing and perfor-
mance isolation policy in a dynamic workload. We also quantify the over-
head of configuration space search in our prototype implementation.

Our results show that the Dragonet approach of using dataflow modeling
enables automated reasoning about the filtering capabilities of NICs. In
addition, Dragonet can provide policy-based queue management by exter-
nalizing the resource allocation policies from the network stack in a portable
way.
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Chapter 6

Dragonet for Bandwidth
management

6.1 Introduction

Interest in a host-level bandwidth management mechanism is increasing
with the growing number of competing bandwidth-hungry applications. This
is evident with recent work in data-center level network bandwidth man-
agement [JKM+13, HKM+13], and a research in implementing scalable
rate-limiting capabilities using NIC hardware [RGJ+14]. Bandwidth man-
agement can provide better QoS and predictable performance by avoid-
ing cross-talk between application flows using same underlying networking
hardware. We believe that the ability to manage bandwidth between network
flows based on high-level policies helps in making the network bandwidth a
first-class citizen for effective resource management.

The current approach of providing bandwidth management capabilities in
software, typically as a OS service, comes with an additional CPU over-
head [RGJ+14]. This approach of providing bandwidth control as an OS
service puts the OS in the data path, and hence is not a good fit with the re-
cent push toward separating the data and control plane [PLZ+14, BPK+14].

123
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Modern NICs are pushing the ability to provide bandwidth management
in hardware which can save CPU cycles, but these features have limited
capabilities and flexibility. For example, the Intel i82599 NIC supports up-
to 128 rate limiters, which are enforced on the transmit queues, instead of
on the network flows. These capabilities are difficult to use due to their
interactions with other NIC features, and we discuss them in section 6.4.1.
In addition, the capabilities for bandwidth management differ across NIC
vendors. This inflexibility and diversity in hardware capabilities makes it
difficult to use them to implement bandwidth management in a portable way.

This chapter is motivated by potential benefits of providing bandwidth man-
agement and how NIC hardware capabilities can be useful for it. We aim
to explore a hardware-agnostic approach to provide policy-based bandwidth
management at host-level while using NIC hardware capabilities whenever
possible. We present the Dragonet approach of modeling bandwidth man-
agement capabilities of NIC hardware, and bandwidth requirements of net-
work flows as a data-flow graph. This abstract model enables reasoning
about hardware capabilities for bandwidth management, and a current net-
work state for bandwidth requirements. The high-level reasoning provides
a way to implement a hardware-agnostic and policy-based bandwidth man-
agement on the abstract data-flow model.

We also present this work to showcase that the Dragonet approach is ex-
tensible beyond a queue management use case, and can be used to manage
different categories of hardware features.

In the next section 6.2, we discuss a related work for different potential ways
to provide network bandwidth management. We present a motivating use
case of bandwidth management in deploying multiple analytics workloads
in the following section 6.3. We make a case for using hardware capabilities
by quantifying their benefits and difficulties in using them in section 6.4. In
section 6.5, we present the Dragonet based solution and its evaluation. We
discuss our conclusion in section 6.6.
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6.2 Current approaches and related work

There are multiple ways to provide bandwidth management (e.g., software
based, hardware based) and it can be provided at different levels (e.g., host
level, network level). This section will review various approaches at dif-
ferent levels, while focusing on the flexibility of a bandwidth management
approaches, and their ability to use hardware resources. We are mainly fo-
cusing on following aspects:

• Bandwidth control enforcer: This component responsible for imple-
menting the bandwidth control using the available mechanisms. For
example, bandwidth control can be implemented by a host software
layer, host NIC hardware or a network switch.

• Granularity: This defines a degree of a fine-grained control sup-
ported for bandwidth management. For example, a flow-level granu-
larity allows controlling the bandwidth of each individual flow, whereas
a host-level granularity can only control the bandwidth for each host
irrespective of number of flows from the host.

• Bandwidth management interface: This is the interface provided to
specify the bandwidth allocation policies. This interface will be used
by a resource management system or an administrator to manage the
allocation of a bandwidth.

• Flow requirements interface: This interface specifies the active net-
work flows and their desired network bandwidth requirements. The
flow requirements are conceptually different from the actual band-
width allocations as the former is the ideal allocation for the flow
based on the application requirements, and the later is what a resource
management system wants to allocate to the flow.

We describe current approaches available for network bandwidth manage-
ment and traffic shaping using above aspects in this section.

6.2.1 Linux Traffic Control infrastructure

Linux provides a software based infrastructure (TC) [lin12] to implement
traffic shaping functionalities. The TC bandwidth allocation policies work
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by creating hierarchical traffic-classes using queue discipline (qdisc) def-
initions. The TC infrastructure provides filters to classify the network
flows into the qdisc classes by using the network packet headers for match-
ing.

The TC approach is flexible in creating detailed traffic classes and filters to
suit traffic shaping requirements. This flexibility comes with a cost of high
CPU overhead and limited accuracy in bandwidth limiting [RGJ+14].

The TC infrastructure focuses on enforcing traffic shaping, and leaves out
the decision about how to allocate bandwidth between different flows and
applications. It provides bandwidth management interfaces focused on cre-
ating traffic shaping classes and filtering the flows in these classes. The re-
sponsibility of understanding the flow requirements, making the bandwidth
allocation plan and updating it based on the changes in a system is left to the
higher-level service. Typically a system administrator is expected to make
these decisions.

6.2.2 Software router based approach

Another approach is to implement a software switch within a host machine
which is then configured to provide bandwidth management similar to a
stand-alone network switch hardware.

Xen Open vSwitch [PPA+09] uses this approach to provide bandwidth con-
trol between different virtual machines. The Click router [KMC+00] is a
configurable soft router which can be configured to provide bandwidth man-
agement functionality. A software router running within a host system can
provide flexible bandwidth management at a granularity of networks flows,
but with additional work for a CPU due to the software nature of the solu-
tion.

The soft router provides a rule-based interface, similar to a network switch
configuration, focused on enforcing the bandwidth control. Similar to TC,
this approach also leaves the responsibility of understanding the flow re-
quirements and making the bandwidth allocation plan to other higher-level
services.
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6.2.3 Network based approach

A network-based approach provides bandwidth control as a function of the
network by distributing it across all the switches in the network. It can be
used by configuring every switch in a network to control the bandwidth used
by each machine connected to it. This approach reduces the CPU overheads
on the hosts by moving the functionality of bandwidth control to the net-
work and distributing it across all the network switches. Unfortunately, this
decentralization increases complexity of implementing policies due to the
difficult problem involving correctly and consistently configuring of all the
network switches.

The Software Defined Networking (SDN) approach separates the data-plane
and control-plane of a network switch, while allowing full centralized pro-
gramability of the control-planes of these network switches. This central-
ized control over control-planes streamlines network configuration [MAB+08],
and hence simplifies the problem of managing the bandwidth controlling
policies across all the network switches. The Openflow specification [spe12]
provides flow-level bandwidth control mechanisms which are managed from
a centralized SDN-controller to implement network-wide bandwidth con-
trol. The Openflow-based approach is successfully used for data-center
scale bandwidth management for distributed applications in Google B4 [JKM+13]
and Microsoft Swan [HKM+13] deployments.

Even with the increased flexibility of the SDN-based approach, using net-
work switches for traffic control is not ideal in all the cases due to its re-
active nature. These solutions allow excess traffic to be generated and then
handle it by reactive actions such as random packet dropping [FJ93]. This
reactive approach works well when the higher-level protocols have built-in
flow-control mechanisms which can adapt to packet drops (e.g., TCP), but
it may not work well for protocols which do not have adaptive flow control
mechanism (e.g., UDP). Section 6.4 evaluates the interactions of external
bandwidth control mechanisms on adaptive flow control mechanisms within
protocols.

The use of PAUSE frames defined in the IEEE 802.3x [eth97] flow control
scheme can avoid dropping packets by disabling further traffic generation
for the whole link. This approach is too coarse grained when flow-level
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bandwidth control is needed, as the PAUSE frames supports only link-level
bandwidth control.

Data center bridging

Data center bridging (DCB) [dcb] aims to provide network-level traffic man-
agement solution using a support from both network and host.

DCB uses the Quality of Service (QoS) field in the IPv4 packet header to
tag a packet with one of eight traffic classes. These traffic classes can be
used to represent different requirements for the traffic (e.g. low latency,
low jitter, high bandwidth, high priority, etc). DCB capable hardware and
software elements in the network use these tags to classify the packets into
an appropriate traffic class, and allocate the resources to them accordingly.

A network flow can be tagged with a traffic class based on the application
suggestion provided as a flag in the socket API (SO_PRIORITY) [soc13],
or based on the IPTables/TC rules [ipt] provided by a system administra-
tor. Recent work uses an approach of inferring the traffic class for a network
flow based on the net_prio cgroup of the application initiating the
flow [neta].

Every DCB capable element in the network is free to interpret the meaning
and resource requirements of these traffic classes independently, based on
their local configuration. DCB tries to help with a potential mismatch due to
a distributed configuration by supporting an information exchange protocol
which can be used to share the configuration information across all DCB
capable elements [dcb09].

In addition to tagging the traffic with a traffic class, DCB provides a mech-
anism for per-class bandwidth control using Enhanced Transmission Selec-
tion (ETS) [dcb11b], and can actively pause excessive traffic generation
directly at a host using Priority based Flow Control (PFC) [Dcb11a] at a
granularity of a traffic class instead of an entire machine.

The DCB approach provides some degree of separation of flow requirements
from bandwidth allocation. The classification of flows into one of the eight
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traffic classes is done by applications or a system administrator, and the ac-
tual bandwidth control can be implemented by any of the DCB capable ele-
ments in a network. This decentralization of bandwidth control provides an
opportunity to move the CPU overhead associated with bandwidth control
functionality to the most efficient location.

Even though the DCB approach can provide a network-level bandwidth
management solution, it may not be suitable in all the cases as it is limited
to only eight traffic classes. Also, it needs support from all networking ele-
ments and hosts in a network to provide effective bandwidth management,
and hence limiting its applicability.

The DCB approach also introduces a global resource management problem
which involves understanding the capabilities and constraints of all DCB ca-
pable elements and configuring them correctly in order to meet the network-
level bandwidth management policies.

The standardization provided by the DCB approach has helped NIC ven-
dors to push some parts of the bandwidth controlling functionality into NIC
hardware. For example, the Intel i82599 NIC introduced partial support for
PFC and ETS to offload part of the DCB functionalities onto NIC. We are
exploiting these NIC hardware features in our work.

Our work is currently focused on solving the host-level resource manage-
ment problem to meet the high-level policies while dealing with diversity
and complexity in NIC hardware capabilities. Even though we are using the
hardware capabilities in the NIC which were motivated by DCB, we are not
tackling same problem of global resource management as DCB.

6.2.4 NIC hardware support for bandwidth control

Recent high end NICs are providing many hardware features including band-
width control. One example is the Intel i82599 NIC which supports DCB
features in the form of per queue rate control [Int10b] for up to 128 trans-
mit queues and weighted scheduling of transmit queues to prioritize certain
queues. There is very limited support for configuring these NIC hardware
features in the mainstream Linux kernel [Bra12, Fas13b, Fas13a]. This lim-
ited support from the OS has led to the development of vendor specific so-
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lutions such as the Data Plane Development Kit (DPDK) which exposes
the hardware capabilities of NIC directly to applications [int]. The active
developer community around this open-source project [dpd] suggests an in-
creasing interest in exploiting the NIC hardware capabilities to implement
high-performance networking applications.

The recent SENIC research explores the use of NetFPGA [Netb] hardware
to implement precise bandwidth control in programmable hardware which
can scale to tens of thousands of flows, without using a host CPU [RGJ+14].
This clean-slate approach of implementing a NIC using programmable hard-
ware designed to provide scalable bandwidth-controlling capabilities makes
a strong case favoring NIC hardware capabilities for bandwidth control.

We are currently focusing on exploiting the existing functionality of per
queue rate control in the Intel i82599 NIC, but we believe that our approach
of modeling the bandwidth controllers to provide policy-based bandwidth
management can also be used with the SENIC design.

6.2.5 Software traffic shaping vs hardware bandwidth con-
trol

The bandwidth control support provided by a typical NIC should not be con-
fused with the traffic shaping capabilities supported by a software solution
like Linux TC.

A software based traffic shaping solution is typically flexible in support-
ing different characteristics of the network traffic. For example, Linux TC
provides a Hierarchical Token Bucket (HTB) traffic shaper which supports
separate configurations for traffic rate, burst size and bandwidth ceiling. In
addition, it supports hierarchical composition of traffic classes, where each
class can have a different traffic shaper, and a priority.

On other hand, typical NIC hardware implements a rate limiter which pro-
vides a limited configuration space. For example, the Intel i82599 NIC
bandwidth controller will only ensure that the underlying transmit queue
will send packets at a given rate. It neither supports separate configura-
tions to accommodate different burstiness of a network flow, nor hierarchi-
cal composition of traffic classes or priorities.
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In many use cases, the limited capabilities provided by hardware is sufficient
to provide useful bandwidth control among the flows. In this chapter we are
limiting ourselves to these use cases.

As we are focusing only on bandwidth control capabilities, we are using
the terms "rate controller" and "bandwidth controller" interchangably in this
chapter.

6.2.6 Putting Dragonet bandwidth management in context

The Dragonet approach for bandwidth management we present in this chap-
ter tries to use NIC hardware capabilities whenever possible to reduce the
CPU overhead. We are currently focusing on bandwidth management at the
host-level using the hardware capabilities within the host, and we leave the
problem of network-level bandwidth management for future exploration.

Dragonet also differs from the existing approaches as it separates the spec-
ification of network flow bandwidth requirements from the policies for ac-
tual bandwidth allocation. This allows us to develop and modify high-level
bandwidth allocation policies without having to worry about the details of
per flow bandwidth requirements. This separation of the policy also enables
us to adapt the bandwidth allocation plan in presence of dynamically chang-
ing network flows and their requirements.

6.3 Motivating example: QoS for databases

This section presents an example showing some benefits of bandwidth man-
agement in providing Quality of Service (QoS) for a deployment of multiple
analytics workloads on a single server. We aim to show that bandwidth man-
agement has an impact on observed client performance when bandwidth in-
tensive workloads are competing with each other, and thus having the mech-
anisms to control bandwidth allocation is useful in such situations.
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6.3.1 Use case overview

Our use case is inspired by a recent trend of running different types of data-
processing on same data sources to provide different information [GMB+15],
as well as co-locating different workloads on single machine. We are inter-
ested in the impact of sharing network bandwidth between different work-
loads, hence we choose to co-host multiple network intensive database ana-
lytics workloads to increase the contention for network bandwidth.

We show how to provide differentiated service to high priority (HP) work-
loads by provisioning more bandwidth than other best effort (BE) work-
loads. This use case is similar to the QoS use case we have seen in the queue
management chapter (5.6.3), but here we focus on bandwidth management
instead of queue allocation.

Application and deployment setup

We designed our experiment to quantify the impact of sharing the band-
width between multiple applications and explicit bandwidth management.
We used an in-house research database called Fruitbox [GMB+15], which
is a distributed version of the SharedDB [GAK12] database. Fruitbox has
two main components:

• Storage engine: This component is responsible for storing and ac-
cessing the database tables, and for basic operations like scans and
lookups which are related to a storage layer.

• Query engine: This component is responsible for running all the op-
erators (e.g., projection, join, aggregation) involved in executing a
query.

The distributed version of the database allows running the storage engine
and query engines on different machines, which communicate over the net-
work using the MVAPICH2 [Netd] library. This library provides an op-
timized implementation of MPI [Mes09] interfaces which can work over
Infiniband, Ethernet and shared memory. For this experiment, we use a
configuration which used the Linux socket interface on top of an Ethernet
network.
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The Fruitbox database supports running the Star-Schema benchmark [OOC07],
a specialized version of TPC-H Analytics workload. The queries involved
in the star-schema workload access most of the data, triggering a significant
amount of data-movement from storage engine to query engine machines.
This behavior makes it a bandwidth-bound workload, and hence is an inter-
esting use case for explicit bandwidth management.

To ensure that the workload’s bottleneck is the network bandwidth, we
measured the bandwidth used by the system when running the workload,
and confirmed that the it is indeed using most of the available bandwidth
(8.8Gbps). The bottleneck was further confirmed by verifying that the re-
ducing the available bandwidth to the machine leads to a decrease in applica-
tion performance. Due to the read-only nature of the star-schema workload,
most traffic is on a connection from storage engine to query engine, and
hence we focus on these links in our evaluations and observations.

Hardware used

For our experiments we use two machines, each with four sockets and ten
Intel Xeon E-5-4650 @ 2.4GHz CPUs on each socket, and 512GB total
RAM. The machines are connected with the Intel 82599 10GbE NIC and
FDR Infiniband interconnect. We dedicate one machine for storage engines
and we use the other machine for query nodes and the client load generators.

Deployment details

In our experiments, we deploy four separate instances of distributed Fruit-
box databases. All four storage engines are co-located on a single machine,
and each storage engine is deployed on a dedicated NUMA node, to avoid
performance degradation due to NUMA contention. Similarly all four query
engines are co-located on a single machine.

We use core pinning and NUMA-aware memory allocation to reduce the
contention for CPU and memory between different workloads. We use the
Linux traffic shaping infrastructure to control the contention for network
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bandwidth on the machine running the storage engines, and it is explained
next.

Implementing differentiated bandwidth control

This section describes how we use the Linux traffic shaping infrastructure
TC on the machine dedicated to the storage engines to control the bandwidth
allocation between different instances of the database storage engines.

Based on our workload mix we create four classes for the network traffic
so that each database instance has its own class. We mark one of the traffic
classes as High Priority, and we provide a differentiated service to it by ded-
icating nearly half of the available bandwidth in a over-subscribed network
link. We use the Hierarchical Token Bucket (HTB) bandwidth controller in
our benchmarking, and we configure it to use the same bucket size, band-
width ceiling and burst size to keep the configuration simple. Here is the
full plan for bandwidth allocation:

• Root class: 9Gbps, using Hierarchical Token Bucket (HTB) band-
width controller

1. Sub-class 1: Database-instance 1, 5Gbps, high priority
2. Sub-class 2: Database-instance 2, 2Gbps
3. Sub-class 3: Database-instance 3, 2Gbps
4. Sub-class 4: Database-instance 4, 2Gbps

The Linux TC also supports borrowing of unused bandwidth between traffic
classes. We create a separate “Static” and “Dynamic” allocation configu-
ration using this feature. We also evaluate the “Default” behavior when no
bandwidth management was applied.

6.3.2 Evaluations and observations

This section presents the results and observations from our experiments.

Figure 6.1 presents impact observed by the clients when running the four
database instances using different bandwidth management configurations
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for the storage engines. The plots include following bandwidth manage-
ment mechanisms:

• Default setup: This setup uses the default behavior of no bandwidth
management.

• Dyn_SW setup: This setup uses the software based Dynamic band-
width management where applications are allowed to "borrow" un-
used bandwidth from other applications.

• Static_SW setup: This setup uses the software based static bandwidth
shaping configuration where each application can use a fixed amount
of bandwidth.

For each bandwidth management configuration we ran all four databases
alone and in isolation from other workloads. This gave us an upper bound
on how well a database can perform if there is no contention for bandwidth
or other resources. Second, we ran all four database workloads together to
measure the impact of contention for the network bandwidth.

In following plots, the high priority workload is represented as a green box-
plot with triangles as a median mark, and the other three workloads in the
best effort category are represented as a blue box-plots with circles as their
median mark. The black box-plot with crosses as the median mark repre-
sents the workloads in the default configuration without any explicit band-
width control.

The box-plots for running the “Default” configuration (black box-plot with
crosses as the median) alone and together shows that the transaction rate
of each database drops to approximately 25% when sharing the network
bandwidth between four workloads. This is expected behavior as the default
behavior of the Linux network stack is to ensure fairness for all applications
including bandwidth allocation. Therefore each workload gets one-forth of
the total bandwidth when running together, and hence the performance of
each application degrades to one-forth.

The configuration “Dyn_SW” represents a bandwidth sharing policy where
the goal is to maximize the utilization of the available bandwidth while
providing differentiated QoS. This configuration is able to provide a high-
priority database with approximately twice the transaction rate of the best-
effort databases during bandwidth contention when running the workloads
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Figure 6.1: Impact of differentiated bandwidth control on a mixed analytics work-
load

together. It is also able to maximize the bandwidth utilization, and hence
provide high transaction rates to all databases when they are running alone,
without any bandwidth contention.

The configuration “Static_SW” represents bandwidth controlling policy where
the goal is to provide stable performance irrespective of the contention on
the bandwidth. The transaction rate for the high-priority database is ap-
proximately twice that of best-effort databases, irrespective of the changing
contention when running alone and running together.

6.3.3 Observations about QoS in Databases

In this section, we used QoS for databases as motivating example, and we
presented results supporting our claim that bandwidth management is an
effective mechanism to provide differentiated Quality of Service between
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bandwidth-intensive applications like analytics workloads. We also show
that we need different policies to manage the bandwidth based on different
high-level goals such as maximizing the link usage, performance stability
or prioritizing certain workloads.

We assume that the configuration of network flows and bandwidth require-
ments from the above benchmark are representative of the QoS use case,
and use them in the remaining chapter. Next, we will quantify the potential
benefits from using hardware bandwidth controllers for the QoS use case
used in this section.

6.4 Quantifying benefits of HW bandwidth con-
trollers

In this section, we aim to quantify the benefits of using NIC hardware fea-
tures for bandwidth management. Our main goal for the benchmarks pre-
sented in this section is to understand the impact of hardware rate controllers
on CPU utilization and their accuracy, in comparison to software based so-
lutions.

Our secondary goal is to understand the interaction of explicit bandwidth
management on factors like packet sizes, and the flow control mechanisms
present in protocols like TCP. At a high level, we make a case for benefits
of hardware bandwidth controllers, and to explain the complexities in using
these hardware features.

The next section 6.4.1 will give details of the hardware bandwidth control-
ling capabilities of the Intel i82599 NIC which we are using in this explo-
ration. The following section 6.4.2 will explain the setup used in the bench-
marking, section 6.4.3 will describe the results and our interpretation of
them. The last section 6.4.4 will conclude the evaluation and will elaborate
on the difficulties and implications using hardware bandwidth controllers on
high level resource management.
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6.4.1 Hardware bandwidth controllers in NIC

This section discusses the capabilities of bandwidth controllers in NIC hard-
ware, and the tread-offs in using them.

i82599 NIC bandwidth management capabilities

As we discussed in the related work, most of the Intel i82599 NIC band-
width management capabilities are motivated by Data Center Bridging [Int10b].
One example feature is multi-class priority arbitration and scheduling for
bandwidth allocation between different virtual machines (VM) running on
the same host machine using separate virtual functions provided by the NIC
hardware per VM. Another useful feature is rate limiter (bandwidth con-
troller) per TX queues to control transmit data rate for each TX queue sep-
arately.

Even though multi-class priority arbitration and scheduling is a useful mech-
anism for prioritizing a flow, it is tightly coupled with virtualization support
and using it requires the use of separate NIC virtual functions (and hence
separate MAC addresses). In our initial implementation, we focus on the
rate limiting per TX queue feature, as it is easier to use, and is sufficient for
our study of policy externalization.

This rate limiting is implemented by using the configured rate to calculate
and enforce a minimum inter frame space between two consecutive packets
sent on the same TX queue. This value is continuously adapted based on the
length of the last transmitted packet and configured data rate to make sure
that the configured data rate is enforced.

Advantages

Using the bandwidth controllers in NIC hardware can be useful to reduce the
CPU load by decreasing the amount of work that needs to be done per packet
by the CPU. Such a reduced CPU work per packet will become increasingly
significant in the future as network speeds of 40 and 100 Gbps become more
common.
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Another potential benefit of using hardware bandwidth controllers is to avoid
the need for a centralized bandwidth controller in software and hence avoid
potential scalability issues. In addition, hardware bandwidth controllers can
simplify software implementation for packet processing further by remov-
ing the need to buffer the outgoing packets in software for rate limiting. This
allows a network stack to process each packet to its completion without any
context switching, and hence makes the packet processing cache friendly.

In this evaluation we are focusing on the impact of the hardware bandwidth
controllers on the CPU cycles consumed by the network stack, and we leave
the evaluation of other potential benefits for future work.

Dis-advantages

Using hardware bandwidth controllers is a non-trivial problem as their ap-
plicability heavily depends NIC hardware capabilities, and the application
requirements for bandwidth.

Additionally, bandwidth controllers tend to be tightly integrated with other
hardware features like virtualization, DCB, and hardware queues which
making them difficult to use without a detailed understanding of the NIC
hardware. For example, In the Intel i82599 NIC [Int10b] the bandwidth
controller can be either configured to work at the granularity of virtualized
NIC interface or or at granularity of traffic classes in DCB, or at the granu-
larity of a TX queue, but not at the granularity of a network flow. In addition,
The bandwidth controller functionality differs between these modes To fur-
ther complicate the matter, modifying the rate limiter settings for a queue
without draining it beforehand can lead to undefined behavior. Using the
hardware bandwidth controllers involves handling these types of quirks and
understanding their implications for the rest of network processing.

6.4.2 Benchmarking setup

Motivation for experiment design: The goal for our benchmarking is
to understand the impact of using hardware bandwidth controllers on CPU
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utilization and on accuracy. For this purpose we select a streaming bench-
mark which stresses the CPU by doing large data transmissions. We use
the stream benchmark from netperf [netc] in our benchmarks which has
a similar behavior to the database QoS case-study we use in the previous
section 6.3. We decided to use the netperf to generate the workload in-
stead of database to simplify few engineering aspects. We don’t aim to fully
replicate the network trace of the database workloads, instead we plan to
simulate similar network bandwidth contention to measure QoS impact.

We use both TCP and UDP streaming benchmarks in our setup to understand
the interactions of protocol flow control with explicit bandwidth control.
We set message sizes of 1024 bytes and 4000 bytes in our benchmark to
understand the implications of packet sizes on the CPU utilization.

We have simulated the configuration of the database use case (section 6.3)
by having four separate netperf instances connected to four separate
netserver instances running on four client machines. We then mark one
of the connections as "High Priority" and rest as "Best Effort" flows.

Machines details: In our experiments, the traffic generation is done by
the Intel Ivy-Bridge machine with two sockets and each socket having ten
Intel Xeon E5 cores and 256GB of total RAM. The server is running the
Ubuntu-14.04-LTS Linux distribution (kernel version 3.13) and is con-
nected to a switch using the Intel i82599 10GbeE NIC. As clients we use
four 64-bit machines running same OS as the server which are connected
to the same switch using the Intel i82599 10GbeE NICs. The clients in this
benchmark are passive as they are only responsible for receiving the traffic,
hence we do not focus on their configuration here.

Measurements: We measure the CPU utilization on the server by pinning
a traffic generating thread to a specific core and then monitoring the load
on that CPU using the monitoring utility dstat [dst]. In addition to the
benchmarking tool netperf’s report of data sent and processed by each
client, we also monitor the traffic received by each client to make sure that
we do not count any traffic that did not reach the client applications.
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Service Demand: In order to understand the impact of using hardware
bandwidth management, we use the metric of "service demand". This met-
ric describes the amount of time spent by the CPU per KB of network traffic.
We calculate the service demand using observed CPU utilization on the par-
ticipating server cores and the traffic observed by each client. The service
demand metric gives a notion of work done by the server CPU in generating
the traffic for particular flow.

We use the service demand metric as a way to compare the amount of work
done by the CPU in generating the load when different bandwidth man-
agement mechanisms are used. Ideally, we expect to observe lower service
demand when using hardware capabilities for the bandwidth management.

Implementing software based bandwidth management: We implemented
software based bandwidth management by implementing a hierarchical packet
scheduler using the Linux traffic shaping infrastructure TC, following the
use case and traffic configuration from section 6.3.1 of co-located analytics
workloads.

We created a separate traffic class for each netperf flow. We marked one
connection as high priority and allocated 5Gbps bandwidth, and we marked
remaining connections as best effort and allocated 1Gbps bandwidth for
each of them. We used the Hierarchical Token Bucket (HTB) bandwidth
controller configured with the same values for bucket size, burst size and
ceiling for all our classes.

• Root class: 10Gbps, using Hierarchical Token Bucket (HTB) band-
width controller

1. Sub-class 1: netperf connection 1, 5Gbps, high priority
2. Sub-class 2: netperf connection 2, 1Gbps
3. Sub-class 3: netperf connection 3, 1Gbps
4. Sub-class 4: netperf connection 4, 1Gbps

We also used a Dynamic configuration which implements a work conserv-
ing bandwidth control by borrowing unused bandwidth between classes, and
a Static and non-work conserving configuration which enforces the band-
width limitations without allowing any bandwidth stealing at run-time.
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Implementing hardware based bandwidth management: We used the
"rate limiter per TX queues" hardware feature available in the Intel i82599
NIC and described in section 6.4.1. This hardware feature can restrict a
transmit queue to a configured transmit rate, and we used this static rate
control to provide basic bandwidth management.

Using these hardware bandwidth controllers in Linux is a non-trivial task as
they are not supported by the Linux kernel [Bra12]. We modified the ixgbe
device driver for the i82599 NIC to configure four specific TX-queues with
specific rate-limiters with hard-coded values. Based on our configuration,
we selected the values of 5Gbps for the high priority queue and 1Gbps
each for the low priority queues. Only the traffic in these queues will be
subjected to bandwidth management, and all other queues will work without
any restrictions.

To control the network flows mapped to these customized TX queues, we
use our insight into the network stack implementation. The Linux kernel
network stack will typically allocate one TX queue for each core, and will
use only that queue to send the outgoing traffic generated from that core. We
exploit this behavior to select the TX queues with rate limiters by pinning
the traffic generating thread to the specific core. This gives us some control
on selecting TX queues in absence of explicit mechanisms to control the
selection of the TX queues, and allowed us to run our benchmarks while
using hardware bandwidth controllers.

Configurations used: We used the following four bandwidth controlling
configurations in our benchmarks.

• Default: This configuration does not apply any bandwidth manage-
ment. It is presented as a reference showing a default behavior of the
Linux network stack.

• Dyn_SW: This configuration represents dynamic bandwidth control
implemented in software using the Linux TC infrastructure. This con-
figuration aims for maximizing the bandwidth utilization by allowing
workloads to "borrow" unused bandwidth from other workloads while
providing QoS when there is contention for bandwidth. This configu-
ration is provided for a reference only as we are mainly interested in
the evaluating the hardware capabilities.
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• Static_SW This configuration represents static bandwidth control im-
plemented in software using the Linux TC infrastructure. This con-
figuration aims to provide the configured bandwidth irrespective of
contention for the bandwidth.

• Static_HW This configuration setup represents static bandwidth con-
trol similar to Static_SW, but implemented using hardware features as
described in a section 6.4.2. This configuration also aims to provide
configured bandwidth irrespective of the contention.

For each of the above bandwidth controlling configurations, we run all four
netperf workloads alone (in isolation from other workloads). This gives
us an upper bound on data transfer and CPU utilization when there is no
contention for network bandwidth. Second, for each of the configurations
we run all four netperf workloads together. This allows measuring the
impact of controlling the network bandwidth during the contention.

We select one of the workloads to be high priority (green box-plots with
triangles as a median mark) and the other three workloads were grouped in
the best effort category (blue box-plots with circle as a median mark).

6.4.3 Evaluations and observations

Figure 6.2 presents the data transmitted, CPU utilization and service de-
mand for UDP with a message size of 1K and with different bandwidth
management mechanisms.

Default bandwidth management:

The bandwidth observed by each client for all the configurations for run-
ning the workloads alone and running them together are presented in the
sub-graphs 6.2a and 6.2b respectively. The “Default” configuration behaves
as expected and is similar to the database case. The traffic observed by
each client drops from 5Gbps when running alone to 2.5Gbps when run-
ning together. With four clients, essentially this benchmark is saturating the
server NIC at 10Gbps TX bandwidth.
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Figure 6.2: Understanding the impact of using different bandwidth management
mechanisms with UDP for 1K message size

The sub-graphs 6.2c and 6.2d presents the CPU utilization including the
“Default” configuration. The sub-graph 6.2c shows that when running alone
this configuration saturates the CPU. In case of running all workloads to-
gether (sub-graph 6.2d), 35% CPU is idle as the NIC TX capacity is satu-
rated.
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Note that 5Gbps is the maximum amount of traffic that can be generated
with a single core when using a message size of a 1K as the single core
becomes the bottleneck.

The most interesting observation for this configuration is that the service
demand showing the time taken to handle 1KB of data does not change sig-
nificantly between the workload running alone (sub-graph 6.2e) and running
together (sub-graph 6.2f). This shows that amount of work done per data is
constant in the default mode irrespective of other flows and load.

This meets our expectation that under the same bandwidth controller imple-
mentation, the service demand should be similar as no additional work is
done by the CPU.

Dynamic bandwidth management:

The “Dyn_SW” configuration involves additional work on the CPU to main-
tain the per flow bandwidth rates in software. Due to this additional book-
keeping work, the service demand increases by 43% compared to the “De-
fault” configuration even though there is no contention as each flow is run-
ning in isolation (sub-graph 6.2e). The additional CPU overhead leads
to a reduced performance for the “Dyn_SW” configuration of less than
3.5Gbps bandwidth per client when each flow is running alone compared
to the “Default” configuration which gets approximately 5Gbps bandwidth
(sub-graph 6.2a).

The bandwidth borrowing works as expected and similar to the “Dyn_SW”
configuration in the database workload (6.3.2), allowing low priority flows
to borrow the bandwidth from high priority flows.

When running together the “Dyn_SW” configuration (sub-graph 6.2b) the
best effort clients are able to get 1.5Gbps instead of the promised 1Gbps,
and we believe that this is due to spare bandwidth available as the high
priority flow is not able to utilize all of its 5Gbps bandwidth.
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Static bandwidth management using software:

The “Static_SW” configuration behaves similar to “Dyn_SW” configuration
regarding service demand when running the workloads alone as the network
stack needs to do the additional work to enforce the bandwidth restrictions.

The service demand further increases for the best-effort workloads when
running all workloads together for this configuration. The increase is partic-
ularly high for the best effort flows, and we think this increase in the CPU
time per byte sent can be attributed to the extra effort needed to deal with
additional buffering needed due to the limited bandwidth.

Static bandwidth management using hardware:

The service demand observed for the “Static_HW” configuration which uses
the hardware bandwidth controllers is comparable to the “Default” configu-
ration. This is the most interesting result showing that by using the hardware
bandwidth controllers, the CPU does not need to do any additional work to
enforce the bandwidth guaranties.

The interesting observation is that the actual bandwidth observed is closer
to the configured value when using the hardware bandwidth controllers than
for the software bandwidth controller. Also the CPU utilization is more
stable when using the hardware bandwidth controller in comparison to the
software bandwidth controller. The higher precision at lower CPU overhead
provided by the hardware bandwidth controller in comparison to the soft-
ware bandwidth controller is also reported by Radhakrishnan et al [Netb].

Evaluation with larger message sizes

We also evaluated the impact of large message size which helps to reduce
per-byte overhead by amortizing the packet processing.

Figure 6.3 presents the results for running the benchmark with messages of
size 4K instead of 1K. These results show similar behavior as explained in
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Figure 6.3: Understanding the impact of using different bandwidth management
mechanisms on the CPU utilization with UDP for message size of 4000

previous experiment: the service demand is reduced when using the hard-
ware bandwidth controllers.

Another observation is that the increased message size is adversely affecting
the software bandwidth controllers in the presence of bandwidth contention,
leading to an increased CPU utilization and reduced bandwidth for each
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workload. Interestingly this degradation does not happen for the default
configuration which does not implement bandwidth control.

We think that the synchronization overheads in maintaining the bandwidth
statistics in the hierarchical data structures used by TC across the cores
might be causing this performance degradation.

In contrast, the hardware bandwidth controller is getting more bandwidth
while using much less CPU (around 40% less) and reduced service demand
while meeting the bandwidth restrictions accurately. This supports the claim
that hardware features will be more beneficial with higher transfer rates and
larger bandwidth.

Evaluation with TCP

We evaluate the interactions of explicit bandwidth control and the flow con-
trol implemented by TCP by using our bandwidth controlling configurations
with TCP. Our goal is to understand the implications of the interaction be-
tween flow control within a protocol and low level bandwidth control mech-
anisms.

Figure 6.4 presents the results when running the benchmark using the TCP
with 4K message size. The bandwidth observed by each client in this exper-
iment shows that bandwidth control also works with TCP and can provide
QoS between flows.

The important observation here is that the service demand does not change
much with the different mechanisms of bandwidth management even though
the bandwidth restrictions are obeyed correctly. We attribute the lack of
change in the service demand to TCP’s self correcting behavior where it
adapts the window size based on the current availability of the bandwidth.
This adaptive behavior leads to reduced CPU utilization as the CPU does
not keep trying to send data all the time. Hence the benefits of reduced CPU
utilization by using hardware bandwidth controllers are less visible for TCP
in comparison to the stateless protocols like UDP which do not provide their
own flow control. Using the hardware bandwidth controller can be also used
to apply back-pressure at host-level to the TCP connection by controlling
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Figure 6.4: Understanding impact of TCP with different bandwidth management
mechanisms on the observed bandwidth and CPU utilization

the transmission rate of the flow at the host level. This approach of provid-
ing host-level feedback to a TCP connection by generating back-pressure
using hardware can be useful for data-center-wide bandwidth management
techniques based on controlling the host transmission rates [GSG+15].
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6.4.4 Observations about using HW capabilities for rate
limiting

In this section, we used the rate limiting capabilities in the Intel i82599
NIC to show that bandwidth management hardware can save CPU cycles for
protocols which don’t have adaptive flow control (e.g. UDP). Even if these
hardware capabilities may not yield CPU cycle saving for protocols with
built-in flow control (e.g. TCP), they can be still useful as they correctly
enforce the bandwidth limits based on the configuration.

Even though these NIC capabilities are useful, they are hard to use because
of limited support from the OS to use these hardware capabilities. Using
NIC hardware features also involves understanding their interaction with
various other components of the network stack. For example, in our use
of NIC hardware for bandwidth management, we had to understand and
rely on the behavior of the Linux network stack to use the hardware TX
queue associated with a local core to transmit packets from the processes
running on that core. Similarly, you may have to worry about allocation of
receive side hardware filters to make sure that incoming packets and their
notifications are delivered to a receive queue which is linked to the core
where the application is running.

The problem of using NIC hardware properly becomes even more difficult
in the presence of multiple applications competing for the resources. Now
it becomes necessary to worry about:

• deciding which flows should get which hardware resources
• making sure that other flows will correctly use software solutions
• configuring both the hardware and the network stack correctly
• adapting the bandwidth allocation plan when new flows arrive or old

flows disappear

Without having a solution for all these parts, it is difficult to use NIC band-
width management capabilities in the presence of multiple competing appli-
cations.

This difficulty is further increased because of different vendors implement-
ing bandwidth management in different ways with different semantics. Deal-
ing with this diversity in NIC hardware requires a portable solution for net-
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work bandwidth management. Also, the policies for bandwidth allocation
need to be portable and hence hardware agnostic, so they can be used irre-
spective of the hardware capabilities across different NICs.

We claim that policy-based usage of bandwidth management features pro-
vided by a NIC in the hardware-agnostic way can be achieved by applying
the Dragonet approach of modeling the NIC hardware and network stack,
and then solving a configuration space search and embedding problem. We
present our solution in the next section.

6.5 Dragonet for managing HW bandwidth con-
trollers

This section presents a Dragonet based solution for policy-based manage-
ment of hardware bandwidth controllers to provide bandwidth control be-
tween flows.

Section 6.5.1 provides an overview of the solution and next section 6.5.2
presents an evaluation showing that the solution works as expected. Sec-
tion 6.5.3 concludes the discussion.

6.5.1 Overview of Dragonet approach

This section provides an overview of how Dragonet provides policy-based
management of NIC hardware bandwidth controllers in a hardware agnostic
way. We have broken down the problem in the following sub-problems
which we will explain in more detail:

1. Understanding hardware capabilities
2. Understanding application requirements
3. Generating potential suggestions
4. Evaluating potential suggestions based on high-level policies
5. Finding a good resource allocation plan
6. Implementing the selected resource allocation plan
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Figure 6.5: Example of bandwidth management configuration

Understanding Hardware capabilities: PRG

Dragonet needs to understand the capabilities and configurability of the
NIC hardware regarding bandwidth management. This is done by modeling
those hardware features and their configurability with a function node and a
configuration node respectively in the NIC PRG.

Figure 6.5a shows the simplified example of a send side of an unconfigured
PRG, which models the capability of the i82599 NIC to enforce per queue
transmit rate limits for three TX queues. The function nodes are shown
with a white background and the configuration nodes are shown with a cyan
background. A function node with dotted boundary is a software node. The
TxHWQueue* nodes represent hardware transmit queues of the NIC and
the TxQueue* nodes represent software nodes which are responsible for
handing over the send packet descriptors to the hardware for transmitting.
The configuration node TxCRateLimiter represents the configurability
of the NIC to provide per-queue rate limiting capability. This node can
be configured with a number representing a bandwidth in Mb/s, or can be
disabled to represent no rate control.

Figure 6.5b shows an example of a configured instance of the same PRG af-
ter applying the following configuration values [TxRateLimit(5000Mb/s)
→ Q1, TxRateLimit(2000Mb/s)→ Q2, TxRateLimit(None)→ Q0].

The TxRateLimit_*Mbps function nodes represent the configured hard-
ware capability of the NIC to enforce specified bandwidth on the TX queue.
In this example TxHWQueue1 will be limited to the rate of 5000 Mb/s



6.5. DNET FOR MANAGING BW CONTROLLERS 153

due to the F-node TxRateLimit_5000Mbps, TxHWQueue2will be lim-
ited to the rate of 2000 Mb/s due to the F-node TxRateLimit_2000Mbps
, and TxHWQueue0 will have no rate limit.

The process of applying a configuration also adds a Boolean predicate spec-
ifying a rate limit (TxRateLimit(5000)) on the queue which will be used
by Dragonet for the embedding step described later.

Understanding application requirements: Application Interface

In order to provide bandwidth management per flow, we need to collect
information about the application’s requirements for the desired bandwidth
of each flow. As application developers are in the best position to know the
desired bandwidths for the flows, we delegate this responsibility to them.

We extended the Dragonet application interface to allow applications to
specify the desired bandwidth requirements for each flow. This informa-
tion is optional and applications may choose to not provide it. In addition,
providing this information does not guarantee the actual allocation of the
bandwidth to a flow, but is used as a request to the system which may get
ignored. For example, when the aggregated bandwidth requests from ap-
plications are more than the total available bandwidth, the system is free to
ignore some bandwidth requests based on high level policies and application
priorities.

Our interface is different from TC as we focus on gathering the bandwidth
requirements for each flow from the applications, and high-level policies
are used during the enforcement to decide which application requirements
should be satisfied. On the other hand, the TC interface focuses on specify-
ing how bandwidth should be divided and hence it combines the application
requirements and the resource allocation policies. This focus makes the TC
policies difficult to adapt when the application requirements change (e.g.,
one of the application finishes).

As the bandwidth requirement is an attribute of a network flow, we were
able to model this attribute in our LPG by extending our existing flow ab-
straction 3.5.2. The bandwidth requirement attribute is later used by our
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hardware oracle to generate reasonable suggestions for hardware configu-
rations and by the embedding algorithm to determine if additional software
nodes are needed to enforce these bandwidth requirements.

Generating potential suggestions: Hardware oracle

The next problem that Dragonet needs to solve is to efficiently explore the
whole configuration space of the NIC hardware to find interesting configu-
rations based on the current application requirements. The hardware con-
figuration space of a NIC can be very large making it infeasible to search
the whole space. The hardware oracle helps to reduce the search space by
suggesting only a few reasonable configurations using information about
application requirements, existing configuration and knowledge about the
hardware capabilities.

To meet our goal of generating interesting hardware bandwidth controller
configurations based on the application flow requirements, we extended our
existing hardware oracle for the Intel i82599 NIC. This hardware oracle
is already capable of suggesting hardware filter configurations for receive
queues by analyzing the network flows, and we were able to incrementally
modify it to include suggestions for rate controllers by looking at the desired
flow requirements for bandwidth.

In order to simplify the problem of generating bandwidth management con-
figurations, we make the assumption that "a network flow will use receive
and transmit queues with the same queue-id". This allows the hardware
oracle to allocate receive side hardware filters and transmit side hardware
bandwidth controllers together.

Our existing Intel i82599 NIC hardware oracle use the flow information to
propose a receive hardware filter to steer the flow on one of the receive
queues. We extend this approach to suggest a few bandwidth management
configurations on the transmit queue with the same queue-id as used by the
receive side hardware filter. It uses the information from the application flow
requirements to suggests different bandwidth management rates for each
hardware filter configuration.
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Flow (sip:sport, dip:dport, UDP, 2Gbps) ->
[
{ 5T(sip:sport, dip:dport, UDP, Q0), TxRL(2Gbps -> Q0)},
{ 5T(sip:sport, dip:dport, UDP, Q0), TxRL(1Gbps -> Q0)},
{ 5T(sip:sport, dip:dport, UDP, Q0), TxRL(None -> Q0)},
{ 5T(sip:sport, dip:dport, UDP, Q1), TxRL(2Gbps -> Q1)},
{ 5T(sip:sport, dip:dport, UDP, Q1), TxRL(1Gbps -> Q1)},
{ 5T(sip:sport, dip:dport, UDP, Q1), TxRL(None -> Q1)},
{ 5T(sip:sport, dip:dport, UDP, Q2), TxRL(2Gbps -> Q2)},
{ 5T(sip:sport, dip:dport, UDP, Q2), TxRL(1Gbps -> Q2)},
{ 5T(sip:sport, dip:dport, UDP, Q2), TxRL(None -> Q2)}

]

Figure 6.6: Example of the configuration suggestions generated the oracle

Currently we implement a simple strategy of generating configuration sug-
gestions by mapping the given flow to every send/receive queue-pair. We
suggest a configuration by inserting a hardware filter for receive steering to
a particular queue-id, and additional bandwidth management configurations
with different rates for the same queue-id. The different rates used are in
1Gbps decrements starting from the flow requested rates.

Figure 6.6 is an example of the configuration suggestions generated by the
oracle based on an input of a single UDP flow (e.g. Flow (sip:sport,
dip:dport)) with a desired bandwidth requirement of 2Gbps, and three
available send/receive queue-pairs.

The oracle accepts the flow and suggests a set of configuration changes
which includes the five-tuple receive filters (shown with 5T(...)) direct-
ing the given flow to each of the available queues, and hardware rate-limiters
(shown with TxRL(...)) specifying bandwidth limits on the queues used
by the hardware filters based on the desired rate of the flow. In this example,
the oracle has suggested nine relevant configuration changes based on the
information in the flow for further analysis.

This example illustrates how the oracle can use the available information to
generate the most interesting hardware configuration suggestions, and hence
reduce the overall search-space.
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Evaluating resource allocation plans: Cost functions

Cost functions provide a way to evaluate and score different resource allo-
cation plans based on high-level system policies. In the context of providing
policy-based bandwidth management, cost functions provide us a way to tell
which bandwidth allocation plan is more desirable for the current policy.

The cost function for scoring queue allocation works by taking the potential
mappings from flows to queues and then scoring these mappings based on
the configured policy. We extend the cost function from section 5.4.4 of
previous chapter to use additional information about bandwidth rates asso-
ciated with queues and flows. This additional information allows us to write
bandwidth allocation policies in addition to hardware queue allocation poli-
cies.

We evaluate our system with two different cost functions. We use a band-
width balancing cost function which tries to balance the available bandwidth
among all the flows, and a priority based cost function which tries to meet
the requirements of high priority flows for the bandwidth allocation, and
then balances any remaining bandwidth between all other flows.

The implementation of the priority based cost function is extension of Alg. 1,
and we present a high-level sketch of the modified cost function in Alg. 3.
Our modifications add additional way of measuring the cost based on dif-
ference in the rate limit applied to each queue and the aggregate bandwidth
required by all the flows mapped to that queue. We calculate separate costs
for queues with high priority flows and for queues with best effort flows. We
also include additional penalty for not meeting the bandwidth requirements
of high priority flows.

Finding the resource allocation plan: Greedy search

The exploration of the NIC configuration space to find a good configura-
tion for the current application requirements is achieved by using greedy
search. The search works by finding a best configuration for a single flow at
a time. For each flow it will use the hardware oracle to find a set of the most
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Algorithm 3: Cost function for static bandwidth management
Input : The available queues Qs and flows F
Input : K queues assigned to HP flows
Input : A function isHP() to determine if a flow is HP
Input : The flow mapping fmap
Input : Bandwidth requirements of flows fmapBW
Input : Rate limits per queue qmapRL
Output : A cost value
// determine HP and BE flows
(FHP , FBE)← partition F with isHP() function
// determine queues for each flow class
QsHP ← the first K queues from Qs
QsBE ← the remaining queues after K are dropped from Qs
// are flows assigned to the proper queues?
OKHP ← ∀f ∈ FHP : fmap[f ] ∈ QsHP

OKBE ← ∀f ∈ FBE : fmap[f ] ∈ QsBE

if (not OKHP ) or (not OKBE) then
return CostReject 1

// Find difference in rate limit and BW
requirements of all flows mapped to queue

Diff(q)← qmapRL[q]− sum(fmapBW [f ])∀f ∈ fmap :
fmap[f ] == q
// Calculate cost based on BW difference for all BE

flows
costBE ← abs(sum(Diff(q)))∀q ∈ QsBE

// Calculate cost based on BW difference for all HP
flows

costHP ← abs(sum(Diff(q)))∀q ∈ QsHP

return CostAccept (HPPenalty ∗ costHP ) + (costBE)

interesting hardware configurations, and then score them using a cost func-
tion to find the best configuration for the current flow. Then the search will
incrementally evaluate the next flow. The greedy search approach we use
for smart queue management also works for managing the bandwidth con-
trollers. We only had to extend the search to support multiple configuration
changes for each step in the greedy flow instead of just one configuration
change as assumed in the smart queue management solution. The multiple
configuration changes are needed to incorporate the configuration of hard-
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ware filters and the bandwidth controller.

Implementing selected resource allocation plan: Embedding

After finding the best resource allocation plan, this step takes the resource
allocation plan found by the search step and implements it by configuring
the NIC hardware and by emulating any missing functionality in software.
In the context of bandwidth management, this step will be responsible for
configuring the bandwidth management hardware and providing a software
implementation for bandwidth control when no suitable hardware capability
is available.

Dragonet can implement this step of configuring the PRG graph using the
selected configuration, and then embedding the configured PRG in the LPG
graph representing the current network stack state and flows. This embed-
ding can use boolean logic to work out which missing functionalities need
to be emulated in software.

Implementing the software bandwidth controller: Dragonet needs a
way of emulating bandwidth management capabilities in software when
hardware support is not available. For this we implemented the simple token
bucket based bandwidth controller in Dragonet and configured it to behave
as a simple rate controller. We configured out bandwidth controller to mimic
the behavior of the hardware rate controllers of the Intel i82599 NIC by set-
ting the burst size and bucket size to the provided bandwidth rate.

A typical bandwidth controller implementation involves a queue as it may
have to hold onto the packet for a while before transmitting it. We im-
plemented the software bandwidth controller by re-using the communica-
tion queue between the application and the Dragonet stack endpoint. This
simplifies the packet processing and the implementation of bandwidth con-
trollers by removing the need for an additional queue but at the cost of some
flexibility. This reduced flexibility shows in the form of software bandwidth
control happening at the granularity of an application endpoint, and not at
the granularity of a socket endpoint.



6.5. DNET FOR MANAGING BW CONTROLLERS 159

The current implementation of our software bandwidth controller and its
location in the application-stack communication queue can be easily re-
placed with other implementations which do not have the limitations out-
lined above. As the lack of flexibility in our current software bandwidth
management implementation does not hinder us from evaluating the auto-
matic configuration of bandwidth controllers, we use it in our initial use
cases. We plan to extend it in the future with a more flexible implementa-
tion.

Current limitations: Support for the automatic embedding of a band-
width controller node is currently missing, and we use hard-coded configu-
rations in our benchmarks. Note that the configurations were correctly gen-
erated by the search step, and we use these auto-generated configurations to
hard-code the parameters for the bandwidth controllers.

6.5.2 Evaluation

This section presents the evaluation of the bandwidth management capabil-
ities of Dragonet. We focus on showing that:

• bandwidth management in Dragonet works.
• Dragonet generates reasonable resource allocation plans based on poli-

cies in the cost function.
• Dragonet provides predictable and desired behavior based on the user

policies specified in the form of cost functions.

Experiment setup

We use the same hardware setup as described in section 6.4.2. In addition
to the Intel i82599 10GbE NIC we also use the Solarflare SFC9020 10GbE
NIC on the server to as a representative of a NIC without bandwidth man-
agement support in the hardware to run our experiments. This allows us to
show how Dragonet behaves on NICs with and without hardware support
for traffic bandwidth management.
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We are using the same OS and other software as described in section 6.4.2.
In addition we use Intel’s DPDK [int] and Solarflare’s OpenOnload [Sol10a]
libraries to enable Dragonet to use advanced features of the i82599 and
SFC9020 NICs respectively.

Application details: Based on the netperf configurations we use in
section 6.4.2 (Quantifying benefits of HW bandwidth controllers), we im-
plement a simple UDP traffic generator which creates a separate connec-
tion for each client machine and then continuously sends messages of the
specified size, and for the specified duration over each connection. We use
a separate thread running on a dedicated core for each connection to avoid
conflicts related to CPU sharing. We are currently using UDP for this bench-
mark as TCP support in Dragonet is limited.

We monitor traffic received by each client machine to evaluate the band-
width controlling behavior. As Dragonet uses an additional core and polling
for each hardware queue we could not reliably compute the idle CPU time
and service demand. Hence we are only reporting the bandwidth observed
by each client to show the effectiveness of bandwidth control.

Micro-benchmark details: In order to focus on the impact of bandwidth-
managing capabilities, we follow the setup from our previous benchmarks.
We use a simple setup with four separate client machines using four connec-
tions. We reduce the impact of other parameters by using a separate thread
and a separate core for each load generation thread, and we also use a queue
allocation plan where each connection will get its own hardware queue from
Dragonet. We ensure that all resources and parameters for the workloads are
identical, except for the available bandwidth which is controlled based on
the configuration generated by Dragonet. This allows us to evaluate the im-
pact of our bandwidth controllers in isolation from other parts of Dragonet.

Dragonet deployment details: We use a Dragonet deployment with five
hardware queues and the cost-function of balancing the workload (“bal-
ance”) and prioritizing the workload (“static”). As this configuration has
only four active flows, each flow will get its own set of hardware queues
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for sending and receiving. So, the balance and priority cost-functions do
provide the same queue allocation plan, but they differ in their bandwidth
allocation plans.

Each flow in the micro-benchmark requests 5Gbps as its desired band-
width, and one of the flows is marked as a high priority flow. We configure
our cost functions to only use a maximum of 8Gbps total among the flows
from the micro-benchmark. This bandwidth restriction ensures that the cost
functions will generate bandwidth allocation plans that are similar to the
ones when benchmarking the hardware bandwidth controllers in section 6.4.

Configurations used: We use the following configurations in our bench-
mark:

• Default: This configuration does not apply any bandwidth manage-
ment, and only allocates one hardware queue per flow.

• Balance (Bal): This configuration uses a balancing cost function
which aims to be fair to all the flows by dividing the provided band-
width (8Gbps) among the flows.

• Static (Static): This configuration does static allocation of bandwidth
to meet the requirements of high priority flows and then balances the
remaining bandwidth among the remaining best effort flows.

For the “Bal” and “Static” configurations, we show results for both using
hardware bandwidth controllers (“_HW”) and using software bandwidth
controllers (“_SW”).

For all the configurations we run experiments with each flow active alone,
and all flows active together to see the effectiveness of the bandwidth man-
agement.

Evaluations and observations

This section presents the results of our benchmarks and provides our obser-
vations on them. Figure 6.7 presents the per client bandwidth observed for
different bandwidth management policies implemented using cost functions
for two NICs.
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Figure 6.7: Evaluation of UDP bandwidth benchmark on Dragonet

The “Default” configuration represents the results without any bandwidth
management. The bandwidth while running each flow alone with this con-
figuration shows that Dragonet can only reach a bandwidth of 2.8Gbps.
This is 42% less than the 4.8Gbps bandwidth observed on Linux with a
similar setup. We believe that this decrease in bandwidth is due to an im-
plementation issue in the Dragonet data path that we have not resolved yet.
In our initial benchmarking of the bandwidth control, we work around this
issue by only using bandwidth rates of 2Gbps and less. As we limit our-
selves to data rates reachable by Dragonet, we believe that our observations
about the ability to configure and use the hardware bandwidth controllers
are valid.

Evaluation of Dragonet resource allocation capabilities: We use two
different cost functions implementing different bandwidth allocation poli-
cies to evaluate the resource management abilities of Dragonet.



6.5. DNET FOR MANAGING BW CONTROLLERS 163

Our balancing cost function aims to be fair to all the flows by dividing the
available hardware queues and the bandwidth equally among them, regard-
less of their desired bandwidth. In our experiment setup of four flows, the
balance cost function divides the available 8Gbps into four flows, giving
each flow 2Gbps even though all of the flows have requested 5Gbps.

On the other hand, the static cost function aims to prioritize the requirements
of the high priority flows. This cost function gives the requested 5Gbps
bandwidth to the high priority flow, and then equally divides the remaining
3Gbps bandwidth among the best effort flows.

These two example cost functions show that it is possible to write a cost
function which will find a desirable resource allocation plan from the avail-
able configuration space.

Evaluation of Dragonet bandwidth management implementation: We
evaluate Dragonet’s capability to use a resource allocation plan to provide
bandwidth management in hardware and in software. Once the resource
allocation plan is generated, we work around the missing implementation
of the embedding step (section 6.5.1) by hard-coding the configuration for
the rate controllers in the Intel i82599 NIC, and the software rate controllers
when the hardware rate controllers are not available.

The results for the “Bal_HW” and “Static_HW” configurations for Intel
i82599 in a figure 6.7 show that Dragonet is able to configure the hard-
ware correctly, and get the expected behavior based on the configurations
selected using the respective cost function.

The results for the “Bal_SW” and “Static_SW” configurations for both the
Intel i82599 and the Solarflare SFC9020 NICs show that Dragonet can pro-
vide bandwidth control in accordance with the given cost function using the
software implementation when no hardware capabilities are available.

6.5.3 Observations

We have presented micro-benchmark results on two different NICs with two
different cost functions which are used by Dragonet to provide policy-based
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resource allocation. Our evaluation is far from complete, and we are still
missing the implementation of the embedding step to have a complete solu-
tion for bandwidth management in Dragonet. As we have implemented this
step for the hardware queue management, we believe that we should be able
to provide a complete solution with additional engineering efforts.

With our initial results, we claim that the Dragonet approach of modeling
networking hardware to enable reasoning about hardware capabilities, and
using cost functions to implement policy-based resource management can
be used for bandwidth management.

6.6 Conclusion

In this chapter we argue that bandwidth management is a useful abstraction
to provide differentiated performance to applications. Using NIC hardware
capabilities for providing bandwidth management also has potential for ad-
ditional benefits in the form of reduced CPU load. Using the hardware capa-
bilities to provide bandwidth control is difficult due to limited support from
the OS, interaction of these features with different part of the network stack
and diversity in the level of hardware support for bandwidth management
provided by different NIC vendors.

Our initial results show that Dragonet can provide a systematic approach to
use these hardware bandwidth controllers while externalizing the resource
allocation policies in hardware-agnostic cost functions. Our approach helps
the applications using bandwidth control by providing portability across
different NIC hardware with different capabilities and makes changing re-
source allocation policies easier.



Chapter 7

Conclusion

In this thesis, we address the problem of increasing diversity and complex-
ity in NIC hardware. The diversity of the current NIC hardware along with
its underlying complexity prevents the applications as well as the host net-
work stack to benefit from the modern NIC hardware capabilities, making
this problem increasingly important as the gap between network and CPU
speed continues to increase. Part of the difficulty stems from the layered
architecture of traditional network stacks which it hides information about
the hardware under rigid interfaces to improve the portability. This lack of
a systematic way to expose information about evolving hardware capabili-
ties through the network stack makes it difficult for applications to benefit
from them without bypassing the OS and using vendor-specific interfaces.
Further, the layered architecture and vendor-specific interfaces also makes
it difficult to manage limited NIC hardware resources in the presence of
competing applications.

The goal of this thesis is to provide a systematic approach to manage and
exploit NIC hardware capabilities to the benefit of applications in a portable
way. We believe that a hardware-agnostic way to represent packet process-
ing capabilities and flexible interfaces to share the information regarding
these capabilities are needed to effectively use the NIC hardware resources.

We approach this problem by making the observation that most packet pro-
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cessing capabilities in the modern NICs are packet manipulation functions
with configurable behavior. We make the assumption that the dataflow graph
based model captures sufficient information about packet processing capa-
bilities of hardware and network stack state to enable automated reasoning
about NIC capabilities in a hardware-agnostic way. In this context, we in-
troduce simple abstractions to represent the packet processing performed by
the NIC hardware and the packet processing required by the network stack
as a dataflow graph. By using the same abstractions to express packet pro-
cessing in both hardware and the network stack, we are able to automate
reasoning about offloading protocol processing. We have implemented the
Dragonet host network stack based on this approach.

we introduce new abstractions based on the dataflow models to enable shar-
ing of fine-grained information about packet processing between the net-
work stack layers which can be used for adapting packet processing based
on the work done by other layers. We have restructured the network stack
to separate resource management from the control path and packet process-
ing. Furthermore, we have implemented the hardware-agnostic and policy-
based resource management layer using the information exposed by these
interfaces about the NIC capabilities and current packet processing require-
ments.

Dragonet also uses the dataflow model of packet processing for the runtime
assembly of its application-specific library network stack to complement
the currently configured NIC hardware capabilities. This adaptability of
the software network stack allows dynamic re-allocation of NIC hardware
resources at runtime based on high-level policies and changing application
requirements.

We demonstrate that using our approach the NIC hardware resources (e.g.,
NIC hardware queues, packet filters and hardware rate controllers) can be
translated into application performance improvement based on the high-
level policies.

In the interest of building a working system in the time available, we have
not explored the implications of our approach for many interesting aspects
of the network stack implementation. For example, our implementation cur-
rently does not provide a way to model memory and buffer usage. Modeling
memory usage can be instrumental for reasoning about memory pressure,
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and managing memory bandwidth. In addition, we have not fully explored
how our approach can be adapted to latency sensitive hardware capabilities
and workloads, as we have mostly focused on QoS and bandwidth manage-
ment in our current work. We also currently lack a full implementation of
the TCP protocol. We explored the feasibility of modeling TCP, and realized
that we need additional support to model timer events as input and output
to our models. We also need a safe way to provide read/write access to the
protocol-specific state when the receive and send side of the TCP connec-
tion are deployed on separate protocol threads. Nevertheless, based on our
partial models for the TCP protocol, we believe that our abstractions can be
further extended to create a fine-grained model of TCP by capturing timer
events as a new type of input for our model.

In addition to implementation limitations, our approach has some other lim-
itations due to the use of the dataflow model. This model does not naturally
map to fully programmable hardware (e.g, NIC with onboard programmable
core or FPGA) because of our assumption that the NIC hardware has con-
figurable but otherwise fixed functionalities. Hence, our approach may not
be able to exploit the full capabilities of such hardware. However, the model
we present in this thesis is still useful as it provides a way to use the pro-
grammable hardware by modeling a few commonly used functionalities as
configurable/loadable functions. Additionally, our model does not capture
the exact packet processing (e.g., our model only captures that a checksum
is calculated, but does not specify how exactly it is calculated), but assumes
certain semantic knowledge about packet processing. This design decision
has certain implications, including limitations in pushing custom applica-
tion logic into the NIC. We discuss a potential extension to support custom
application logic in the next section.

7.1 Future work

There are many potential use cases which can benefit from using the dataflow
model as a basis for representing packet processing and are worth further
exploration.
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7.1.1 Pushing application logic into NICs

Our reasoning for offloading packet processing is currently limited to push-
ing network stack processing into the NIC. However, with the increasing
availability of programmable NICs (either with onboard core or FPGA), our
model can be extended to support offloading application logic.

Our dataflow model can provide the basis for representation and the inter-
face. The representation can be used to capture application specific packet
processing, and the interface can be used to communicate among different
layers of the network stack. Supporting such offloading of application logic
will require further development of our model to include the detailed de-
scription of the packet processing, and we can leverage existing research
(e.g. FlexNIC [KPS+16], P4 [BDG+14]) for this purpose. The proposed
exploration will also involve extending our current mechanisms of label-
based and predicate-based reasoning to use information about processing
happening in each node.

The ability to express generic packet processing will allow us to extend
Dragonet to manage other accelerators as well. For instance, PacketShader
[HJPM10] explored the use of GPUs for performing routing decisions, and
we can extend Dragonet to manage GPUs for performing well-formulated
network operations (e.g., network routing, checksum calculation).

7.1.2 Integrating with SDN capabilities

Recent progress in Software Defined Networking (SDN) [MAB+08] aims
to provide software controlled function from the network. Also, there is a
push to extend the OpenFlow specification [spe12] further to include more
packet processing capabilities and protocol oblivious processing [Son13].
This trend towards having software controlled and flexible packet process-
ing capabilities in the network gives an opportunity to use the Dragonet
approach and extend it further. For instance, Dragonet can include the
packet processing capabilities of the network for optimizing packet process-
ing within a host. Dragonet can also help in end-to-end resource manage-
ment and packet processing optimizations by providing a handle on host-
based NIC capabilities and packet processing, which can be used by the
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data-center wide resource management service for end-to-end co-ordination
of resources for the network flows.

7.1.3 Integrating with high-level language based approaches

The MirageOS [MS13] explores the use of a high-level, safe language (OCaml)
to implement and aggressively optimize the packet processing needed for
the application. Currently, this approach focuses on optimizations based on
the application requirements but does not take into account the capabilities
of the NIC hardware. We believe that there is scope for additional optimiza-
tions if this approach has more information about the NIC packet processing
capabilities.

7.2 Concluding remarks

As the diversity of the hardware increases, we need to question the current
approaches. This thesis has revisited the host network stack architecture and
shown the feasibility of using dataflow models to handle the diversity in the
NIC hardware. The dataflow model presents an abstraction to specify the
protocol processing functionalities, and hence can be used to communicate
the packet processing requirements and capabilities in a hardware-agnostic
way. The insights and knowledge gained from this exploration provide a
foundation for further research in network stack architecture and NIC hard-
ware design.
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