
Master’s Thesis Nr. 46

Systems Group, Department of Computer Science, ETH Zurich

An Evaluation of Capabilities for a Multikernel

by

Mark Nevill

Supervised by

Prof. Timothy Roscoe

November 2011 – May 2012

Abstract

With ever-increasing numbers of cores in modern hardware and the
prospect of heterogeneous architectures becoming more appealing, re-
liance on cache-coherent shared memory is a source for hardware design
and scalability problems. To accommodate these changing requirements,
multi-kernel operating systems aim to reduce the sharing in the kernel
by replicating kernel state on every core.

To retain the ability to share resources between applications on dif-
ferent cores, we design a capability system derived from a single-core
capability system used in the seL4 microkernel, but with operations ex-
tended to handle the incomplete views of the capability system present
on each core. Through the introduction of an ownership property we
achieve a design similar to ones found in distributed object systems. We
illustrate where synchronization is still needed to ensure consistency, and
demonstrate the need for an index datastructure when exchanging infor-
mation about capabilities between cores.

Acknowledgements

I would like to thank Prof. Roscoe for his mentor-
ing and input, Simon Gerber for working with me and
patiently letting me discuss my ideas with him, Kornil-
ios Kourtis, Kevin Elphinstone and Andrew Baumann for
answering my questions and providing guidance at many
points along the way, and many others in the ETH Zürich
Systems Group for their feedback and assistance. I would
also like to thank my parents for their years of support,
providing a welcoming port of respite many times along
the way, and my sister and other friends for their much-
needed distractions.

Contents

Contents 1

1 Using Capabilities for OS Resource Management 3
1.1 Motivation . 3
1.2 Review of Capabilities . 4
1.3 Capabilities in seL4 . 6
1.4 Capabilities in Barrelfish . 9

2 Sharing Resources Across Cores 13
2.1 Ordering of Operations . 14
2.2 Operations and Contracts . 16
2.3 Behaviour . 17
2.4 Transactions . 20

3 Detailed Analysis of Behaviour 21
3.1 Interference Between Operations 21
3.2 Memory Reclamation . 23
3.3 Delete Cascades and Reachability 26

4 Capability Lookup 29
4.1 Review of Search Datastructures 30
4.2 Ordering . 32
4.3 Range Queries . 34
4.4 Performance Evaluation . 34

5 Conclusion & Future Work 41

A Hamlet Examples 43

B TLA+ Specification 47

Bibliography 59

1

Chapter 1

Using Capabilities for OS
Resource Management

The aim of this thesis is to investigate methods of using a capability-based
system for operating system resource management in a multi-kernel operating
system model, and to evaluate one possible design in detail.

1.1 Motivation

The primary function of operating systems is multiplexing shared hardware
resources between processes, while limiting the ability of each process to affect
others undesirably, a property called “confinement”. This is done at various
levels by different operating systems: while some ensure only that processes
cannot arbitrarily interfere, others provide many abstractions for common pat-
terns among resource types. At its core, an operating system’s kernel must
therefore be able determine what resources a process may access, and must
therefore track the relationships between resources and processes.

As indicated by Baumann et al. [1], mainstream operating systems gener-
ally expect memory to have a single shared address space with implicit cache
coherency and all processor cores to have the same instruction architecture.
Metadata is assumed to be shared, with various synchronization methods pre-
venting race conditions. When memory is unshared or not coherent, a separate
kernel must be booted on each core, and additional drivers must be used to
exchange any information between these systems.

Barrelfish aims to be a scalable operating system suited for running scalable
parallel applications on hardware with many cores possibly of heterogeneous
architectures. It takes into account the possibility of reduced or no cache
coherence and complex interconnect topologies that may be present in hardware
with many processing units.

To accommodate such scenarios, we assume in Barrelfish that information
is not shared initially, as is necessary with unshared and non-coherent memory.
A kernel is booted on every core, and communication channels established be-

3

tween kernels, in turn allowing the kernels to replicate, synchronize and manage
resources between one another. Where possible, applications may then build
upon the kernel’s communication mechanisms to establish shared resources.

With an unshared kernel on every core, kernel metadata must be replicated
when the corresponding object is shared. However, the accounting informa-
tion must in and of itself be stored in memory, and thus uses resources. In
mainstream operating systems, this metadata memory is simply accounted to
the kernel itself, and when the kernel needs additional memory, it directly al-
locates areas from the available physical memory. However, these allocations
can directly be triggered by hardware events like page faults and other inter-
rupt handlers making kernel memory usage unpredictable, and so the system
may unexpectedly run out of memory. To remove the need for cache coherency
and shared memory in the kernel we explicitly choose which regions are avail-
able to a kernel, but must therefore require that the kernel’s memory usage is
predictable and fully accounted for.

In the remainder of this chapter, we will see how capability systems can
be used to fully account for a kernel’s memory usage, looking first at various
examples of such systems in section 1.2 to gain an intuitive understanding of
capabilities. Because Barrelfish’s capability system is heavily inspired by seL4,
we provide a short overview of how capabilities are used in seL4 in section 1.3,
before looking at how this design has been adapted for use in Barrelfish in
section 1.4.

However, seL4 is designed for single-core systems, and so its capability sys-
tem does not consider parallelism and resource sharing. In chapter 2, we there-
fore investigate how to extend this system in the multi-kernel model and define
the semantics of capability operations in our chosen design. In chapter 3 we
analyse the detailed behaviour of these new operations and their interactions.
Finally, we look at how to reduce the cost of capability lookup, an operation
introduced by sharing, in chapter 4.

1.2 Review of Capabilities

In abstract terms, we can describe capabilities by the following characteristics
shared by capability systems:

• A form of tokens, keys or similar, which we shall refer to as capabilities,
is used to reference objects in the system.

• Without any capabilities, actors do not have access to any objects.

• Capabilities can only be set from other capabilities or via particular calls
into the capability system’s trusted core.

• Capabilities may be dereferenced, invoked or similar. The capability
system checks the validity of the specified capability and if it provides
privileges to perform the action specified.

For example, many Unix-like operating systems use so-called “file descrip-
tors” to track which processes have gained access to which files. Because these
files may also be wrappers around various hardware devices, the end effect is
that these file descriptors track not just access to storage on a filesystem, but

4

also which process has gained access to which hardware device, and what op-
erations may be performed on said devices. In this scenario, the file descriptor
is simply an index into a file descriptor table that the kernel has associated
with each process. Thus, the file descriptor’s value alone carries no authority,
and its meaning is local to the process that has it. Sending a file descriptor to
another process, e.g. by writing its raw value into a socket, has no useful effect;
the other process does not gain access to the resource. Rather, the kernel must
be told to copy the information in the file descriptor table into another process’
file descriptor table, allowing that process to access the entry through its own
file descriptor that may not match the descriptor in the original process. In
fact, because the file descriptor alone carries no authority, all operations that
use the file descriptor itself must be performed through the kernel.

Another variant of capabilities can be found in language runtimes imple-
mented as application virtual machines like the JVM to ensure referential cor-
rectness. Here, memory is conceptually split into two types: data and ref-
erences. References point to a chunk of metadata that precedes every data
block. All data accesses by running code must be relative to a reference, with
the VM enforcing that the data access is within the reference’s data region by
looking at the region information stored in the metadata preceding the data
block. Global references and the execution stack frame reference provide entry
points from which all other data is reached (a fact exploited by these systems’
garbage collector for reachability analysis). To ensure references are valid, each
data region’s metadata contains enough information to determine which areas
are references, and operations on such regions are restricted: they may only be
assigned from other references, or a special “null” value, or the result of a call
to the VM that creates new regions.

A solution similar to that for application virtual machines has also be ap-
plied directly in hardware: every memory word has a bit indicating if it is
storing plain data or a capability. By enforcing that all memory access is
based on a capability, unauthorized memory access is not possible. For exam-
ple, Carter et al. [2] consider a single address-space system with 64-bit words
where pointers are tagged and contain a length and permissions field in addi-
tion to their 54-bit address. All memory access must be performed through
such a pointer, allowing access offsets and permissions to be checked against
the pointer’s information.

Capability implementations can be differentiated by how capabilities are
represented to the client and where the information related to each capability
is stored, both of which are influenced by the system’s ability to restrict a
client’s access to both pieces of information. The following list presents an
overview of common variants:

Tagged (with tag bits) Metadata is stored in the capability token directly,
as in the system described by Carter at al [2], with a tag bit indicating
which memory words are part of capability metadata. The system must
be able to check every instruction for access violations. No metadata
memory is necessary in the target, allowing the whole object, e.g. a
memory frame, to be exposed to the client. Modifying the object in a
way that affects all capabilities is however not possible, as it might require
a scan of the entire memory system.

5

Tagged (with type system) Metadata is stored in a header preceding the
capability’s target object, with a part of the metadata indicating which
areas of the target object are further capability tokens, e.g. using an
array of tag bits. This also requires that the system can monitor every
instruction for correct access, but allows more metadata to be stored then
can fit in the capability directly. The capability tokens themselves simply
point to the corresponding metadata block, and modifying the metadata
is trivial. This system is commonly used by application virtual machines
like the JVM.

Segregated Metadata is stored in protected space not accessible to clients
and presented as a separate address space to each client. Capability
tokens in the client are formed as addresses in the client’s capability
space. Special system calls must be used to perform operations on the
capabilities, including copying between clients where a new copy must
also be made in the receiving client’s capability space. This model is
used in seL4 and Barrelfish.

Password/Sparse As with a segregated system, capability information is
stored in a protected space. To allow for direct copying of tokens be-
tween clients, all clients share the same capability space. This however
opens up the system to capability forgery, as a client may guess capa-
bility tokens and test each one for validity, eventually gaining access to
capabilities of which it never received a copy. To mitigate this, tokens are
expanded in length so only a very small subset of all possible token values
are valid capabilities, making it difficult to guess valid tokens. In the Wal-
nut Kernel described by Castro et al. [3], 64-bit capability identifiers are
extended with a 64-bit password that must match the password stored in
the capability’s metadata in protected space. Introducing a penalty for
using invalid tokens further restricts a client’s ability to enumerate and
test token values.

1.3 Capabilities in seL4

To guarantee various properties related to security, resource usage and real-time
constraints, various operating systems have attempted to formally verify their
system. To make this feasible, the seL4 operating system described by Klein et
al. [7] attempts to minimize the amount of code that must be verified to ensure
correctness of the overall system. To separate the system into individually
verifiable components, these components must be confined, limiting in their
ability to affect the remaining system, and the confinement system must itself
be verifiable. As described by Shapiro et al. [9], capability systems with the
required properties are a sufficient mechanism to formally verify confinement.

In seL4, a capability system is therefore used to account for all system
resources managed by the kernel: memory, threads, capabilities, and com-
munication channels. After bootstrapping an initial thread, the kernel leaves
management of resources up to userspace, only enforcing correctness through
the capability system.

For their system, seL4 uses segregated capabilities, storing capability meta-
data in memory accessible only to the kernel. Arrays of capability slots that

6

From R:
A: Slot 0x13
B: Slot 0xA/4

A

BR

Figure 1.1: A simple CSpace example with the ad-
dresses of the two marked slots as seen from R. As
shown for B, an explicit depth (number of valid bits in
address) must be provided to address inner nodes.

may contain pointers to further such arrays form a directed graph of capabili-
ties. This graph is exposed to userspace as a capability tree that can be walked
by specifying an address formed as a sequence of offsets into slot arrays. When
userspace provides the kernel with such a sequence in the form of an address,
the kernel starts from a thread-specific root node and sequentially applies each
offset to look up the next node, as shown in Figure 1.1. Thus, capabilities form
an address space referred to as “CSpace” that is specific to each thread based
on the root node associated with that thread.

With this system, it should now be possible to start a thread with a capa-
bility to access some region of the system’s memory. We will now look at how
this memory capability can be used to start further threads, and how it can be
split into useful parts which may be mapped into the thread’s virtual address
space.

To allow the various uses of such a memory capability, seL4 introduces a
retype operation. Given a generic memory capability (referred to as “untyped
memory”, or UM), seL4 allows this to be retyped to a mappable “virtual mem-
ory” (VM) capability, or an array of empty capability slots called a “CNode”,
and other types (see Figure 1.2). Additionally, the retype operation may be
used to split the capability into multiple derived capabilities covering adjacent
but distinct areas of the source capability. This allows a large memory capabil-
ity to be split into smaller frame capabilities that may be mapped in different
locations of the address space.

Retyping the same area of memory into different types can however cause
problems: A “thread control block” (TCB) capability contains kernel-private
information about a running thread. If this could be modified directly by
userspace, threads would be able to escape the constraints enforced by the
kernel, e.g. by mapping an area of physical memory to which they should not
have access. However, if a region of memory containing a TCB would also be
covered by a “virtual memory” capability, the thread owning the capability
would be able to do precisely that.

For this reason, the retype operation enforces some constraints: Once an
area of untyped memory has been retyped to a more specific capability type,
that area may not be retyped again until all copies of the derived capability
have been deleted.

The end effect is that memory is laid out as a tree of objects as shown in

7

Untyped Memory

Virtual Memory CNode

Thread Control Block Endpoint

Asynchronous Endpoint

Figure 1.2: Capability types in seL4. Arrows represent
permitted retype operations. The circular arrow rep-
resents the ability to retype UM into to smaller UM
chunks.

CNode TCB UM UM

VM VM EP UM

Figure 1.3: Example layout of memory in seL4.
Acronyms are explained on page 7. On the right side,
a UM region has been split into multiple smaller UM
regions, some of which in turn have been retyped for
other uses

Figure 1.3: at the top, untyped memory, possibly with more untyped memory
below if the top node has been split. Below these, various other memory types
forming the leaves of the tree.

To enforce the constraints described above, the retype operation needs to
know if a given untyped memory capability has already been retyped. This is
the case exactly when the untyped memory’s node in the memory object tree
has descendants. To query this information, seL4 stores the memory object tree
in the Capability Derivation Tree (CDT) — called the “Mapping Database”
(MDB) in Barrelfish — allowing efficient checks for descendants and copies.

In its model, seL4 defines five capability operations, defined as invocations
on the CNode containing the target capability slot: “copy”, “delete”, “move”,
“mint”, and “revoke”. The first three operations behave as expected from their
names, performing basic manipulations of capability slots. The “mint” oper-
ations is a variant of “copy” where the authority provided by the capability
in the destination slot may be reduced as it is created. The “revoke” opera-
tion is more complex, allowing a capability holder to remove all other uses of
the capability from the system by deleting all copies and descendants of the
revocation target.

8

PhysAddr

RAM DevFrame

VNode

CNode

Frame

Dispatcher

Kernel IRQTable

PerfMon ...

Figure 1.4: Incomplete overview of capability types
defined in Barrelfish, including possible retype paths.
VNode (page table) types for different architectures and
PT levels have been stacked.

1.4 Capabilities in Barrelfish

On a single core, Barrelfish’s capability system is based on the model defined by
seL4. However, Barrelfish intends to handle multiple cores, multiple architec-
tures with differing word sizes, and even heterogeneous architectures. Handling
multiple cores is described in chapter 2. First, we will look at Barrelfish’s ca-
pability architecture on a single core.

Types
To deal with various tasks needing privileged access to parts of hardware,
Barrelfish has introduced a number of additional capability types, as shown in
Figure 1.4. These capability types are specified in Barrelfish using a domain-
specific language for which examples can be found in Appendix A. From this
specification we can use a translation program to automatically create a number
of methods and structures needed by the capability system, reducing the need
for hand-written and error-prone boilerplate.

Main Memory The equivalent of seL4’s “Untyped Memory” in Barrelfish is
the RAM type. As with UM, These capabilities can be split into smaller
chunks or retyped as in seL4: Frame capabilities can be mapped into vir-
tual memory, CNodes hold capability slots, Dispatchers represent tasks
with a virtual address space, capability space, scheduling parameters and
more.

9

Page Tables In many operating systems, page faults are handled by the ker-
nel or some other dedicated paging handler. Such a handler must there-
fore be able to allocate memory for the faulting application, and defines
the policies employed by that application. In Barrelfish, applications have
direct handles on their available memory via capabilities, making an ex-
ternal paging service unnecessary and problematic. Instead, applications
are self-paging as described by Hand et al. [6]. By directly exposing
hardware page table types in the form of individual capability types, the
Barrelfish kernel is able to easily enforce correctness of application-built
page tables. Additionally, applications are able to build page tables for
architectures other than the one executing the code, allowing such an
application to build page tables for other cores in an environment with
heterogeneous architectures.

Device Memory Barrelfish RAM capabilities, the equivalent of seL4’s “un-
typed memory”, require that the memory be zeroed before it is read, to
ensure that information is not leaked unintentionally. However, memory-
mapped device registers should not be arbitrarily zeroed. Therefore,
mappable DevFrame capabilities have been introduced that have no such
zeroing requirement. However, these capabilities cannot be derived from
RAM capabilities, as one would have to first create a RAM capability, which
would zero the relevant memory. To solve this, we introduce a parent
type for RAM and DevFrame capabilities, the PhsyAddr type. This type
represents a range of physical addresses and nothing more, and is not
directly useful without being retyped first.

Page tables Mapping memory in Barrelfish is done by manipulating page
table capabilities. To enforce a correct page table hierarchy, Barrelfish
has a capability type for each level of page table on each architecture
it supports. With support for x86_64, x86_32 and ARM, this requires
nine page table types to be defined.

Kernel interface As described in chapter 2, Barrelfish splits its kernel into a
privileged and userspace part. The userspace performs privileged actions
by invoking its Kernel capability.

Others Additional capability types exist for various tasks like performance
monitoring and handling legacy I/O devices.

Invariants
We will next consider the invariants of this capability system. As the system
is based on seL4, the invariants are similar, but must take the generalized
formulation of capabilities into account.

Slots A capability slot contains exactly one valid capability, where the special
“Null” capability is used to model “empty” slots.

Address ranges A capability type may be “addressable”. All objects of this
type must represent an address range that they cover, specified by a base
address and size property in capabilities for that object. The “Null” ca-
pability type is not addressable. Note that although the primary purpose

10

of this property is for representing ranges of physical addresses, it may
also be used for other address ranges that may exist in a system, e.g.
legacy IO ranges.

Equality fields A capability type may specify any number of equality fields.
All capabilities of that type must have these fields.

Copies Any number of copies of a capability may exist in the system. Two
capabilities are considered copies iff they are of the same type, have the
same base and size if addressable, and have matching equality fields.

Relations Capabilities may have ancestors and/or descendants iff they are of
an addressable type.

Ancestors Capabilities may have at most one immediate ancestor (which may
have any number of copies). The ancestor’s type must be equal to or an
ancestor of the capability’s type. In the first case, the capability’s address
range must be a strict subset of the ancestor’s address range, in the latter
case, a non-strict subset.

Overlaps For every pair of addressable capabilities with intersecting address
ranges, one capability’s address range must be a (non-strict) subset of
the other’s.

Immutability Fields of a capability that participate in copy comparisons, i.e.
type, base, size and equality fields may not be modified except when the
capability is deleted in its entirety, i.e. reset to Null.

Operations
The operations also based on seL4. Because we will specify them again when
considering sharing, the operations and their contracts are only loosely defined
here.

Copy Create a copy of the source capability in the destination slot.

Mint Equivalent to a copy, with the possibility of adjusting type-specific ca-
pability parameters (non-equality fields).

Retype If the retype is well founded according to the capability type specifi-
cations, create descendant capabilities in the destination slots.

Delete Delete the capability in the target slot. This may require type-specific
per-copy cleanup operations, e.g. unmapping pages from virtual memory.
If this is the last copy, of the capability, additional type-specific cleanup
operations may be necessary, like clearing slots for CNodes, page table
entries for VNodes, and possibly reclaiming memory when it is no longer
referenced.

Revoke Delete all copies and descendants of the capability in the target slot
(leaving the target itself as-is).

11

Chapter 2

Sharing Resources Across Cores

With the introduction of capabilities to manage kernel resources, we are now
able to account for usage of resources managed by the kernel. As in seL4, a
copy operation provides the ability to copy capabilities between slots, allowing
a client to grant another client access to a resource by copying the capability
into a receiving slot in the target client. While this is sufficient for sharing
resources, it is not safe: copying a capability is not an atomic operation, and
other capability operations like revoke require a consistent view of many ca-
pabilities in the system. If these operations were run on another core, parallel
reads and writes of the same capability slots might interleave and incomplete
operations in the MDB might be exposed.

In Barrelfish, to limit the need for synchronization in the kernel, a separate
copy of the kernel is run on every processing core, with copies not sharing any
resources by default. This per-core share-nothing approach is also extended to
userspace, creating a system where each core acts as a node in a distributed
system.

While this solves synchronization issues in the kernel and allows simul-
taneously running kernels on cores of differing architectures, the system no
longer supports many common scenarios in applications: sharing resource be-
tween dispatchers running on different cores is not possible. As an example,
let us consider a one-to-one producer/consumer setup, where a dispatcher on
one core produces data tuples, putting them in a queue, while a dispatcher
consumes entries from the queue, performing further processing. To support
high throughput and avoid succumbing to latency spikes on either side, a large
circular buffer is usually constructed in shared memory with cache coherency
ensuring a consistent view of the buffer.

Setting up shared memory requires an agreement between dispatchers on
what memory is used, and mapping of said memory into the dispatcher’s virtual
address space. Both parts must involve the kernel: agreement needs communi-
cation, and the kernel by default enforces strict separation. To solve this, the
Barrelfish kernel provides mechanisms to establish communication channels be-
tween dispatchers on different cores. As memory is managed by the kernel’s

13

K
ernel

CPU Driver 0 CPU Driver 1 CPU Driver 2

Monitor 0 Monitor 1 Monitor 2

Application

Spanned Application

Core 0 Core 1 Core 2

U
serspace

P
rivileged

Figure 2.1: Multikernel model with split kernel

capability system, mapping the same memory in dispatchers on different cores
requires the ability to share capabilities for that memory across cores.

To retain the unshared nature of kernel state, Barrelfish separates the kernel
into two components, as illustrated in Figure 2.1: an uninterruptible privileged-
mode “CPU driver” and a trusted user-mode “monitor”, able to perform privi-
leged calls to the CPU driver, that manages state replication and synchroniza-
tion including establishing cross-core communication channels.

2.1 Ordering of Operations

With the monitor handling cross-core communication for the kernel, we are now
able to pass capability information around, the basis for sharing capabilities.
In a first approach, every kernel tracks which other kernels have copies of each
shared capability, and ensures that operations performed on the capabilities
have the correct semantics when viewed over the entire system. This last point
is complicated by reordering of message delivery: although every channel in
Barrelfish acts as a send-once FIFO, messages in different channels have no
ordering relation, as shown in Figure 2.2.

This leads to a first problem: operations may overlap, potentially causing
invariants to fail when related capabilities are affected by multiple operations.
For example, two retype operations on the same source capability might, if both

A

B

C

Figure 2.2: Reordering of events: single-source FIFO,
not causal

14

A B C

Revoke

Revoke

Copy

Ack

Ack

Ack

Figure 2.3: Problems with acknowledgements

executed, violate the overlap or ancestry constraints specified in section 1.4.
As described in the corresponding Barrelfish technical note [10], a simple

solution using individual acknowledgements still suffers from some problems.
As can be seen in Figure 2.3, a copy and revoke may be ordered such that the
copy occurs between two steps of a revoke, leaving a capability in the system
that should have been deleted by the revoke operation.

Another issue is not addressed by such a simple scheme: some capabilities
refer to memory that is internally manipulated by the CPU drivers. Sharing
these capabilities would once again require CPU drivers to synchronize among
one another when user invocations require manipulations of these data struc-
tures. This conflicts with the CPU driver’s goal of being a synchronization-free
core to the operating system.

More generally, the design of a multi-kernel should allow for objects in
one part of the system that cannot be directly accessed from another part of
the system, but must instead be accessed via a suitable kernel instance. This
naturally leads to the concept of object locality: every object is assigned to a
core that must manage access to that object when necessary. In the capability
system we model this as ownership: each capability has an owning core, which
must be the same for all copies of a capability in the entire system. The owner
is then used as the synchronization point when necessary for all operations on
these capabilities, which we describe in the next section.

This design bears similarity to distributed object systems, e.g. CORBA or
the Java RMI system presented by Wollrath et al. [11]. In Java RMI, a “stub”,
corresponding to a non-owned capability in our design, is used to proxy method
calls across a network to server-side object. While this correspondence works
well for remote invocations from non-owned capabilities, the revoke and retype
capability operations have no corresponding operations in such distributed ob-
ject systems. Additionally, because the objects themselves may be directly
accessible from multiple nodes in the system, we have the ability to migrate
the ownership of an object from one node to another without modifying the
object itself.

15

2.2 Operations and Contracts

Using the ownership model described above, we will next consider the semantics
of the capability operations in such a system.

Invariants
To understand the requirements for these operations, we will first clarify what
invariants they must preserve. As we are extending the capability system
specified in the introduction, we inherit the type invariants of that system.
Because we have added an ownership property, we must extend the invariants
to ensure correctness of that property:

Ownership Property Every capability that is not Null has an “owner” prop-
erty that refers to a running kernel instance in the system.

Consistent Ownership Any two capabilities that are copies must have the
same “owner” property.

Owner copies Every set of all copies of a capability must contain at least one
capability where the owner matches the location. With other words, the
owning core must always have a local copy.

Note that the ownership property has no bearing on its non-copy relations: a
capability’s relations may have other owners.

Preconditions
In the list below, we define the preconditions of Barrelfish’s capability opera-
tions. Note that because of the distributed nature of the system, there is no
way to ensure all preconditions are met. For example, a simultaneous revoke
or delete may delete a newly created source capability before it can be used.
Clients should therefore always handle the possibility of a precondition failure.

Copy The source capability is not Null and the destination core is valid.

Retype The source capability is not Null, may be retyped to the destination
type, and has no descendants in the system.

Delete The target capability is not Null.

Revoke The target capability is not Null.

Postconditions
For the system to consider an operation “complete”, the following conditions
must hold. Note again that the invoker may be unable to verify this as further
operations in the system may break the postconditions first.

Copy The destination core has a copy of the capability and the invariants of
the system hold.

Retype The specified descendants exist in the target slots and the invariants
of the system hold.

16

Delete The source capability is Null and the invariants of the system hold.

Revoke All copies and descendants of the source capability have been deleted
and the invariants of the system hold.

2.3 Behaviour

We will describe the behaviour of the capability operations in such a system
as seen from a global system view in pseudocode below. The operations are as
listed in section 1.4, with one difference: we omit implementing a distributed
“Mint” operation as it can be achieved with a distributed copy followed by a
local mint operation.

First, we will clarify the semantics of the pseudocode. The operations use
slots: the storage location for a single capability. An empty slot is equivalent
to a slot containing a Null capability. Every capability — and thus every
non-Null slot — has an immutable location and an owner, as described above.
An individual capability is considered “local” if owner and location are the
same, and “foreign” otherwise. When assigning to a slot dest with “←”, we
copy the capability metadata into the destination slot and update the MDB
on location(dest) and any other tracking information (e.g. memory mappings)
accordingly.

Copy

The copy operation must simply create a new copy in the target location,
making sure that the new copy’s owner is set correctly.

Algorithm 1 copy
operation copy(cap: slot, dest: slot)

if dest is not Null then
fail

end if
dest← cap
if owner(cap) is location(dest) then

set dest to “local”.
else

set dest to “foreign”.
end if

end operation

Retype

To retype a capability, we must check that no other capabilities in the system
conflict with the retype. If no conflict is found, the retyped capability is created
in the destination slot. As the owning core must always have a copy and we do
not want to create capabilities not explicitly requested, the target core must
also become the owner of the new capabilities.

17

Algorithm 2 retype
operation retype(cap: slot, region: range, type: captype, dest1: slot)

if dest is not Null ∨ retype(cap, region, type) is not valid then
fail the retype operation.

end if
if any descendants exist locally or remotely then

fail the retype operation.
end if
dest← local retype(cap, region, type) on location(dest).
set dest to “local”.

end operation

Delete

Because the owning core must always have a copy of the capability, the delete
operation gets complicated when applied to the last copy on the owning core.
In this case, if other copies of the capability still exist in the system, ownership
must be transferred. This is further complicated because not all capability
types support changing ownership: capabilities of some types, e.g. CNode and
Dispatcher capabilities, represent CPU driver state, and would require more
synchronization to migrate from one CPU driver to another.

Algorithm 3 delete
operation delete(cap: local slot)

if last copy on owner(cap) then
if cap is not moveable then

for all foreign copies on all cores do
delete (copy).

end for
do cleanup (last copy deleted).

else
dst← find a foreign copy of cap.
if dst exists then

chown (dst).
else

do cleanup (last copy deleted).
end if

end if
end if
cap← null

end operation
operation delete(cap: foreign slot)

cap← null
end operation

1In both Barrelfish and seL4 it is currently only possible to retype a capability’s entire
region, optionally splitting it into multiple parts, creating multiple output capabilities. For
the sake of simplicity, we only create one output capability per retype, allowing retype
operations to specify a single sub-region of the source capability that is used for the output
capability. The split operation is equivalent to performing multiple subregion retypes in the
same transaction.

18

Delete makes use of an internal chown operation. This operation simul-
taneously updates the owner for all copies of the given capability such that the
given capability becomes “local”.

Algorithm 4 chown
operation chown(cap: slot)

set owner(cap) to core(cap) for cap and all copies of cap.
end operation

Revoke

We define revoke recursively: for each descendant, revoke and delete that de-
scendant. Simultaneously, delete all copies of the target capability. This is
equivalent to the single-core definition of revoke; the complications arise from
the distributed nature of deleting the last copy of descendant capabilities. This
is discussed in section 3.3.

Algorithm 5 revoke
operation revoke(cap: local slot)

for all immediate descendants on all cores do
revoke descendant.
delete descendant.

end for
for all copies on all cores do

delete copy
end for

end operation
operation revoke(cap: foreign slot)

chown (cap).
revoke (cap).

end operation

Invoke

Here, we have a significant departure from the single-core model. For invoke,
we expect all invocations to behave as if going through the owning core, at
least conceptually. In practice, not all invocations on foreign capabilities will
need to go through the owner: a “frame identify” invocation simply returns
information about a frame capability to the caller. Since this information is
present in foreign capabilities, the invocation can be processed locally without
communicating with the capability owner.

Algorithm 6 invoke
operation invoke(cap: slot)

perform invocation on owner(cap).
end operation

19

2.4 Transactions

To reduce complexity of client code, we also specify a limited form of transac-
tional semantics: An operation must succeed in its entirety or have no effect.
This does not imply that intermediate steps are not visible: for example, once
a revoke has been successfully initiated, that revoke must continue to comple-
tion, but we permit a view of the partially completed operation as long as all
invariants remain intact in such a view.

Because of the parallelism in the system, a client cannot test if an op-
eration’s postcondition is fulfilled: by the time the test is executed, another
operation may have changed the system so that the test would fail. Instead,
we simply specify that an operation is complete exactly when its precondition
is fulfilled, and require that operations always progress towards that state so
that they must eventually complete.

20

Chapter 3

Detailed Analysis of Behaviour

Forcing all operations on a capability and its copies to go through a single
core does not however solve all problems of synchronization: the operations
“revoke”, “retype” and “delete” all require a consistent view of the capability’s
relations. We would therefore like to analyse further how capability operations
interact.

3.1 Interference Between Operations

First, we will consider each pairwise combination of operations to determine
how invariants and postconditions may be violated and what must be done to
fix this while also preserving the transactionality guarantees.

Retype
The retype operation must check a capability for descendants in the entire
system. Copy operations do not affect this: copies of the source capability
do not affect the operation, while copies of the descendants can only increase
the number of descendants, leaving the fact that there are descendants intact.
Thus, copy and retype do not interact.

Other retype operations also cannot cause problems: retypes on the source
must go through the same owner core, where they are synchronized. Retypes on
descendants can only create new indirect descendants in areas already covered
by existing descendants, leaving the configuration of immediate descendants
unchanged.

Delete, however, presents a problem: deleting the last copy of a descendant
may affect the outcome of the retype check. We resolve this by marking the
descendant in question as in-delete, and abort the retype when it encounters
such a marked descendant. While this may force revokes that have no effect,
it will never allow an illegal retype.

Finally, retype is affected by revokes; we will discuss this when looking at
revoke.

21

Delete
The delete operation must dispose of any per-copy state, and perform a final
object cleanup when the last system-wide copy is deleted. When deleting the
last owned copy, the delete operation must also check for other copies in the
system and migrate ownership accordingly, so that the capability does not
become ownerless.

Creating new copies does not affect per-copy cleanup, while changing own-
ership is directed by the owning core and can therefore be synchronized.

As stated, deleting the last copy in the system requires an additional cleanup
step that must be performed exactly once. Creating a new copy during the
final delete would interfere with this as the cleanup step might be executed a
second time when deleting the newly created copy. However, in this case both
operations are acting on copies of the same capability, and must therefore be
handled by the owning core, where they can be synchronized.

For the same reason, deletes on the same capability are already synchro-
nized. However, deletes may involve other capabilities during the final cleanup:
deleting CNodes may cause a cascade of deletes, while deleting any RAM-
derived type causes an unreferenced memory check for reclamation.

In the CNode capability case, because it is the last capability copy, any
attempt to access the CNode’s slots in CSpace must go through the CNode
itself, and can thus be blocked. However, the capabilities in the CNode’s
slots may also be found via the MDB, meaning they must be marked as being
deleted at the same time the original deletion target is marked. A second issue
when clearing slots for an in-progress CNode delete is that graph of CNode
capabilities may contain cycles. If this cycle contains the capability that is the
deletion target, recursively clearing CNodes in the cycle would deadlock, as
that capability is used as the starting point for the delete and must therefore
not itself be deleted until the rest of the operation has completed. The mark-
and-sweep algorithm used to resolve these issues is described in section 3.3.

Handling memory reclamation is discussed in section 3.2.

Revoke
The revoke operation may affect many capabilities; not only all descendants and
copies of the revocation target, but the capabilities contained in any CNodes
among those descendants, possibly causing cascaded deletes.

To understand where revoke may interfere with other operations, we will
look at an example of a revoke and retype across three cores as shown in
Figure 3.1.

Three capabilities exist in the system: v at the top on core 1, t on core 2
is v’s descendant, and a third capability x on core 3 that is a descendant of t.
Two operations are launched, a revoke of v on core 1, and a retype of t on core
2. The revoke sends a notification to cores 2 and 3, while the retype operation
only needs to notify core 3. Core 3 receives the revoke first, performing the
corresponding delete. Next, the retype operation arrives on core 3, and is
acknowledged as valid. Core 2 receives the acknowledgement and performs the
retype, creating a new capability n, before receiving the revoke notification
from core 1 and deleting both t and n.

In this scenario, both operations succeeded (for each operation a point was

22

Revoke

1

2

3

Revoke

Retype

1

Revoke ✓

1

Revoke

✓Retype

1

2

2

2

Figure 3.1: Parallel revoke and retype. Numbers indi-
cate cores where capability is located. Core 3 handles
the revoke while the retype on core 2 is still outstand-
ing, but the retype results are deleted by the revoke
once created.

reached where the postcondition was fulfilled and it could thus terminate) and
no capability invariants were broken. However, the retype operation received a
view of the system caused by a partially run revoke. We permit this situation:
no invariants of the system are broken, and the client performing the retype
must be able to handle unexpected deletion of the resulting capabilities just as
easily as unexpected deletion of the retype’s source capability.

As with deletion, the target of a revocation may be among the capabilities
indirectly deleted, whether because it is in a slot of a CNode being revoked,
or in a CNode affected by cascading deletes. This is discussed together with
delete in section 3.3.

3.2 Memory Reclamation

When deleting the last copy of a capability in the system, it is possible that
no application is left referencing a region of memory. If no further action is
taken, this memory will leak: no component in the system is informed of its
availability, and it will therefore never be reused.

This situation could be averted by requiring dispatchers to send unwanted
capabilities back to a capability pool, whether in the monitor or implemented
as an independent service. However, determining if a capability is no longer
needed may be complicated, especially if that capability is shared between
dispatchers. It also does not solve the fundamental issue of deleting the last
capability for some memory, which may still occur by accident or due to a
misbehaving user.

23

Alternatively, if we introduce such a memory pool, the pool could simply
keep a copy of all capabilities it distributes, so that it could reuse these capa-
bilities when no other references remain. Nonetheless, the reuse of otherwise
unused memory regions is not trivial: the memory pool must either continu-
ously attempt to retype the regions memory it manages to determine if they
have become available, or the system must notify the pool explicitly when nec-
essary. Depending on the pool’s implementation it might also be possible for a
misbehaving dispatcher to revoke any capability it receives from the memory
pool, defeating the pool’s ability to monitor that memory for availability.

In both solutions, dispatchers still have a mechanism to delete the last
capability for regions of memory. So instead of trying to avoid this, we can
instead attempt to detect unreferenced memory in the capability system and
notify the memory management system, allowing it to return that region to
the pool of available memory.

This design is similar to garbage collection in many language runtimes, and
implementations can be either lazy (as is common with language runtimes) or
eager.

Scanning Garbage Collection
Detecting unreferenced memory is not necessarily time-critical: as long as
the memory is reclaimed eventually, systems with only occasional allocations
should not suffer. Thus we can use a lazy form of garbage collection, scanning
memory either periodically or on demand. When the memory pool is empty
and receives a memory request, the pool can also trigger an immediate scan.

Analogous to language runtimes, this makes deleting capabilities simple, as
no action is required, but may add a continuous overhead to the system, and
may slow down allocations significantly when a collect is required.

Immediate Collection
If we would like to avoid the background overhead of periodic scans, we can
try to detect unreferenced memory as soon as possible, i.e. when a capability
is deleted. This is not usually possible in language runtimes as it would still
require a scan of all references in memory. In our system, we can instead scan
the MDB in every kernel for relations.

Scanning for all relations in the entire system on every delete would create
a large overhead, but is not necessary. Instead, we can hook into the delete op-
eration as defined in chapter 2: Where the operations performs cleanup actions
for the last copy in the system, we begin our check for remaining relations in
the system.

In a first approach, we check for remaining ancestors and descendants; first
locally where the final delete occurs, then in the entire system. If neither
ancestors nor descendants are found, the memory is reclaimed.

As shown in Figure 3.2, this is a conservative approach that may still leak
memory. A workaround of searching forwards and backwards for more unrefer-
enced memory as shown in will ensure that all memory is eventually reclaimed,
but may still leave regions of memory unusable for extended periods. This
may in turn be resolved by scanning the entire deleted region for areas without
descendants, introducing even more overhead to delete operations.

24

unreclaimed

Figure 3.2: Naïve reclamation leaks when a only parts
of a deleted region have descendants.

Combined
Finally, the possibility exists of combining scanning and immediate methods:
a scanning garbage collector that is only triggered when simpler methods are
unable to determine if a delete requires memory to be reclaimed.

Fragmentation
When memory is reclaimed as described above, a capability is produced for
every unreferenced region. As our capability system is only able to split re-
gions into smaller regions using the retype operation, memory may gradually
fragment until it is no longer possible to allocate large chunks of contiguous
memory.

Lazy collection might partially alleviate this problem as more fragments
may become unused while the collector waits and which the collector may
recreate as a single capability. This would however require tuning of the collec-
tor’s scan frequency to application behaviour and could still be circumvented.

Instead, we can modify the system to allow merging of capabilities. Such a
merge operation would require some restrictions:

• The merged capability must not cover parts of memory that the input
capabilities did not cover. Therefore, the input capabilities must be con-
tiguous and the merged capability must start precisely at the smallest
base address and end at the highest end address of all input capabilities.

• The merged capability must be a legal ancestor of all its inputs. It must
therefore have a type that is a common ancestor the inputs.

• Merging capabilities must not modify the objects corresponding to the
input capabilities.

• Creating a capability of a more general type may allow operations not
previously available to the caller on the more specific input types. There-
fore, the only legal merges are when the input and output types are the
same and a self-retype loop exists for that type, as is the case for the
PhysAddr, RAM, and Frame types.

• Similarly, creating capabilities of the same type but larger size allow
operations not previously available to the user: if the new capabilities
already has copies in the system, the user may revoke this new capability,
thereby deleting those copies. Merging capabilities must therefore not be
possible when would-be copies of the resulting capability exist.

25

Algorithm 7 merge
operation merge(left, right, dest)

if dest is not Null or merge(left, right) is not valid then
fail the merge operation.

end if
dest← merged(left, right)
if dest has any copies locally or remotely then

set dest’s locality according to those copies.
else

set dest to “local”.
end if

end operation

3.3 Delete Cascades and Reachability

The possibility of shared capabilities adds significant complexity to deletes and
revokes, as we will see in this section. Let us first consider delete on its own.

When a capability is to be deleted, three cases present themselves: In the
simplest case, the capability has local copies or is foreign. In this case, the
ownership of the capability is not lost upon delete, and so the capability can
be reset by the CPU driver directly without need for any cross-core negotiation.

In the second complex case we are deleting the last copy of a capability
with local ownership, but with remote copies. If possible, ownership must be
transferred to another core that has a copy of the capability using the “move”
operation. If this succeeds, the capability is now foreign, and can be deleted
safely. On the other hand, if ownership cannot be transferred for this capability
type, all copies of the capability in the entire system must be deleted, and the
initial delete continues in the next case.

The final case is when the capability is the last copy in the entire system.
In this case, any clean-up actions for the object represented by the capability
must be performed. For a RAM-derived capability, this may mean that the
kernel reclaims the unreferenced memory and sends it back to the memory
server. In the case of a dispatcher, that dispatcher is terminated. And in
the case of a CNode, all the slots of the CNode must be cleared. This last
case is where complexity arises: If the initial CNode contains another CNode
capability that also has no copies, the same slot clearing must be performed
on that CNode prior to deletion. This can therefore result in a cascade of
deletions, a complex and long-running operation which at any point may re-
enter this complex third deletion case. Additionally, the chain of to-be-deleted
CNodes can circle around, with the CNode containing the original capability
also scheduled for deletion.

Before we look to solve this, we will also take a look at how this affects
deletions that occur during revocations, whether due to the revocation or due
to a separate delete request.

Revocation of a capability deletes all copies and descendants of that capa-
bility in the entire system. This implies that the capability itself must remain
referenceable during the entire revoke operation, which in turn implies that the
CNode containing the capability must not be deleted until the entire operation
can be executed without needing to reference the original capability.

26

This complexity is not entirely caused by sharing capabilities, but the need
at any point to interrupt the operation and run a cross-core agreement protocol
makes it impossible to store temporary global state in the CPU driver while
the operation is running; any state must be stored in the capabilities being
deleted or revoked.

Solution
Our solution is to clear the capability graph of capabilities for objects that
do not contain capability slots or that can be trivially deleted. Once this is
complete, we have a self-contained graph where all nodes must be deleted. We
can therefore explore this graph, adding all nodes we find to a deletion queue,
which can then be deleted in a single loop.

1. (revoke only) Find all descendants. For every descendant, perform the
“delete” operation.

2. To delete a capability:

a) When deleting the last copy of a Dispatcher capability, clean up
the dispatcher, leaving the two capabilities stored in the dcb struct
intact.

b) When deleting either a CNode capability or the last copy of a Dis-
patcher capability, mark the capability as deleted without clearing
it, and insert it at the end of a singly-linked “clear” list stored within
the extended region of the capability slot.

3. Work through the “clear” list, performing a “delete” as described above
on every slot contained in the objects referenced by the list entry. Then
place the entry in a “delete” list.

4. Walk through the delete list, performing the final clean-up of every entry
in the list.

The corresponding capability state machine is shown in Figure 3.3. Copy
and retype are not included; both operations simply put the capability in the
locked state until the operation completes or fails.

In the algorithm described, both revoke and delete may require locking or
marking many capabilities. Meanwhile, other operations may also be trying to
lock some of the same capabilities. To avoid deadlocks between multiple revokes
and/or deletes, we simply merge the operations, and consider all deletes and
revokes locally complete when there are no remaining marked capabilities. For
copies and retypes that only lock a single capability and its copies, we simply
wait until the lock has been released before locking it again for deletion.

27

local foreign

revoking

ready

ready

null

ownership change³

"chown" to core
with copies

"chown" to local
ownership⁴

marked for
delete

marked for
clearing

cleareddeleting
remote copies

delete

delete¹

delete²

revoke

revoke
done

retype result or created by kernel

deleted by
revoke

moveable last local copy

non-moveable
last local copy

CNode

all non-CNode
slots cleared

locked

del'd by revoke or clear

all marked
CNodes cleared

done

deleted by
revoke or
clear

done

done

revoke

no remote copies

Figure 3.3: Per-capability slot state machine for
deletes and revokes. Actions in bold are user-initiated.
1,2When local copies of a capability exist, delete can
directly null the capability slot. 3When changing own-
ership, the invariant of having exactly one owning core
that is equal for all copies in the system may be tem-
porarily violated. 4This may fail, returning the capa-
bility slot to the ready state.

28

Chapter 4

Capability Lookup

To perform distributed capability operations across multiple cores, we first
need to make sure two monitors can exchange information about capabilities,
and in particular, exchange the data stored in each capability. For this we
must serialize capabilities on the sender, and deserialize them again on the
receiver. Serialization between differing architectures on heterogeneous systems
requires that any transformation of physical address space layouts be applied to
exchanged capability metadata, but this is not explored in this thesis. Instead,
we assume that copying the bytes corresponding to a copy of a capability is
sufficient for serialization, and therefore that all nodes have the same view of
physical memory. However, the receiver must take an extra step: As noted in
section 1.3, the kernel maintains an internal database, the mapping database
(MDB), containing the ancestor, copy and descendant relationships between
all known capabilities. For the received capability to be used and managed
properly, it must first be inserted into this database.

With the introduction of cross-core capability sharing, we have also intro-
duced the need for new query types to be performed on this database:

• Upon receiving a serialized capability with the copy operation, that ca-
pability must be inserted into the MDB. Because the MDB itself is used
to lookup up relations, this insertion must be done without any prior
knowledge of existing ancestors, copies or descendants.

• Checking if a capability retype is legal requires us to check if a capability
has descendants. Again, the capability to check is received in serialized
form without knowledge of relations. One solution would be to insert
the capability in the database and then check for descendants, deleting
the capability again when the check is complete. However, this creates
a temporary capability in the system not specified in our high-level op-
erations. While this might not have an effect on the system, we try and
avoid doing it; we should therefore support querying if a capability has
descendants without inserting the capability if possible.

29

• Deleting the last owned copy of a capability requires that the system
find another copy and mark it owned. Again, performing this check
by inserting the capability creates a new copy not accounted for in the
design, especially problematic in this case since we are trying to check
for the existence of copies. Thus, it must be possible to check for copies
without inserting the capability.

• Memory reclamation as described in section 3.2 needs the ability to find
regions of memory that are not covered by any capabilities in the system.
When implemented eagerly on deletion of a capability, this requires that
the entire system be checked for ancestors, copies and descendants. Copies
are tracked by design, and check for descendants has already been cov-
ered, but checking for ancestors is a new requirement. This check must
be performed without creating any visible copies of the deleted capability.
We may alternatively choose to scan memory for unreferenced regions.
This can be done by stepping through the regions covered by capabilities,
in which case we must at least be able to search the system for a starting
capability, and forward or backward siblings of a given capability.

• Revoke deletes all of a capability’s descendants and copies. On the core
where the revoke is executed, copies and descendants can be found by
searching relative to the revocation target. On other cores, there may
not be a copy of the revocation target, so we must instead query the
source capabilities address range for descendants.

• Remote invocations need to find a local copy of the invoked capability
from its serialized form.

In seL4, the MDB is stored as a doubly-linked list, representing the preorder-
DFS through the hierarchy of capabilities. This data structure allows easy in-
sertion of a capability given its immediate ancestor or a copy, and easy checking
for existence of copies and descendants.

But when no relations are known beforehand, finding the position to place
a new capability requires a O(n) linear scan through the list, as does finding
ancestors and descendants of a capability given just the capability’s value. This
operation is performed in the non-preemptable kernel, creating a scheduling
hole that is problematic for real-time applications.

To reduce the complexity of operations described above, we replace the
MDB’s linked list with a more suitable search data structure.

4.1 Review of Search Datastructures

We shall first consider hash tables. Hash tables provide O(1) lookup with high
probability, and O(1) insertion (amortized or with high probability). However,
we face multiple problems in employing a hash table for the index: Firstly, hash
tables cannot represent the hierarchical relationships between capabilities. One
would still need to maintain additional metadata to find immediate ancestors
and descendants. However, it is not enough to simply add a pointer linking to
each, as individual copies of the relations may disappear; one would have to
check and update these pointers on every delete. Another issue also hinders

30

the adoption of hash tables: While a hash table’s space complexity is O(n),
there is no direct relationship between memory used by the hash table and
elements in the hash table. One would therefore need to allocate additional
memory outside of the capabilities and CNodes. However, the MDB is stored
and maintained by the CPU driver, and the whole purpose of the capability
model is precisely to avoid such allocations in that part of the kernel.

We next consider designing a custom data structure with direct links for
all the relationships to make queries O(1) where possible. Thus we are looking
for a tree structure that maps directly to the capability hierarchy, with direct
links in each node to ancestors, copies, descendants. Additionally, because a
node can only link to one immediate descendant, all immediate descendants
need to be connected in a “sibling” list.

To look up a capability, we recursively walk down the hierarchy: starting
at the first root, we walk the sibling list to find a root node that covers the
target capability. If the found node does not match the target, we recurse:
starting at the first immediate descendant, we again walk through the list of
siblings, and so on. This algorithm presents a first problem: once again, we
have a worst-case of O(n). To solve this, we can replace the sibling list with a
sibling tree with an ordering based on each capability’s base address.

We now have fast lookup, but at the price of having a complex algorithm.
For example, deleting a node may require the tree of the node’s immediate
descendants be merged into the node’s own sibling tree. Additionally, we still
have a problem that we had in the hash table-based solution: a capability may
have many copies, any of which may be deleted; pointers to relations must be
updated when the specific copy that is their target is deleted.

The fundamental cause for the pointer maintenance problem comes from the
reduction of a many-to-many relationship between all copies of a capability and
all copies of it’s immediate ancestor to a direct many-to-one relationship. This
reduction is necessary when using direct references to relations because many-
to-many relationship must be stored externally to both sides of the relationship,
but the CPU driver is not able to allocate space external to capabilities.

To circumvent this problem, we simply must not directly store the relation-
ships at all. Instead, we create a searchable index that is able to efficiently
answer the required queries. However, the space restrictions remain: the index
must be stored within the capabilities themselves. We thus look to a class
of data structures that have a direct correspondence between nodes and ele-
ments: search trees. With a search tree, we can look up capabilities by value,
and find copies quickly by placing them sequentially in the tree’s ordering. Not
all queries are as simple, however: if we place a capability’s first descendant
close in the ordering (as in seL4’s preorder-DFS), the ancestor will be further
away in the other direction, and reverse. To compensate, we convert the tree
to an interval tree using the augmentation technique described in Cormen et
al. [4, p. 311 – 317], which allows us to search for capabilities covering a address
range, which we employ for the ancestor query.

A common choice of search tree for databases and filesystems is the B-Tree.
B-Trees are balanced, can be very shallow compared to other tree types, and
are useful when the node size can be tuned to some block size of the underlying
storage system for improved performance [8]. Since there is at least one element
for every B-Tree node, there will always be a capability available to store the
node, fulfilling our space requirement. However, knowing where to store the

31

node is not so simple; elements can be pushed up and down in a B-Tree, or
even be removed without changing the number of nodes in the tree. Thus, a
B-Tree implementation would have to be able to migrate tree nodes from one
capability slot to another as slots containing tree nodes become unavailable.
Additionally, B-Tree nodes are fairly large: the nodes of a 2-3 B-Tree, the
smallest viable B-Tree degree, contain 6 pointers, for a total of 48 bytes for
64-bit architectures, and 24 for 32-bit architectures. This area must be present
in every capability, used or unused, so we would like to minimize its size.

Because of the complexity of migrating B-Tree nodes between available
capabilities, we will also look at binary trees variants where each element is
a node. Because of this correspondence, a node is removed exactly when its
element is removed and vice versa, meaning no node migration is necessary.
Additionally, the tree needs only a small amount of data per node: two child
pointers, a parent pointer and usually a small amount of metadata, e.g. the
depth, sub-tree height or “colour” of the node (for red-black trees), totalling
25 and 13 bytes for 64-bit and 32-bit architectures respectively.

For the sake of simplicity, we have chosen to implement the index using
an AA tree. This tree, an isomorphism of a 2-3 B-Tree, guarantees that the
deepest leaf is at no more than twice the depth of the shallowest leaf, and
that that deepest leaf is the rightmost leaf in the tree, the last element in
the ordering. Additionally, we have chosen to drop the parent pointer from
tree nodes so we can use the space for other purposes, reducing the node size
to 17/9 bytes (64-/32-bit architectures). This has the effect that retrieving
the predecessor or successor of a node is no longer O(1) on average, but may
instead require a search from the root for the next element in the ordering.
The performance effects of this modification are analysed in section 4.4.

4.2 Ordering

To implement a tree-based index, we now need to define an ordering. This
order must be defined such that the operations defined earlier can be performed
efficiently. To find all copies of a given capability, we would like an ordering
where copies are immediately adjacent to one another. Similarly, to move
up and down in the hierarchy, relations should also be in close proximity.
In essence we would therefore like an ordering similar to the previously used
preorder-DFS, except that any two capabilities must be comparable. From this
we can obtain these first constraints on the ordering:

• Memory capabilities for an area with a higher base address must come
after capabilities for areas with a lower base address.

• For memory capabilities starting at the same base address, the smaller
capability must come after the larger capability.

From these, we can determine an initial requirement: both base address
and size must appear in the ordering, and the base address must have a higher
priority. Also, as smaller sizes must appear later, sizes must be in descending
order. Thus, we have this initial tuple for lexicographical ordering:

(base,−size)

32

Next, we look at the relations between types. When two memory capabil-
ities cover the same area, but the second is derived from the first, how to we
place these capabilities in the ordering? Since the second is a descendant, it
should appear after the first. However, any smaller capabilities covering a sub-
region of these capabilities must be descendants of both, and must therefore
appear after both. Thus, we need to have an ordering by the type hierarchy
that appears between base and −size in the ordering tuple.

How do we create such a type ordering? For this, we must first constrain
the capability type hierarchy to a tree. This allows as to define a partial
ordering between types, which we can use in our global ordering. This opens
the question how to use the partial ordering when comparing capabilities for
which the partial ordering is not defined. Here, we are saved by the nature
of this hierarchy: Retyping memory capabilities can only happen “down” the
hierarchy, and thus all capabilities with the same base address must lie on a
single path from the hierarchy root to a leaf. Since we have already concluded
that we must apply the type ordering after the base address ordering, we will
only ever be comparing types for which the partial ordering of types is defined.
Thus we arrive at this ordering tuple:

(base, type,−size)

One important aspect of capability types remains to be considered, and was
briefly mentioned in the previous paragraph: the type hierarchy is not a tree,
but a forest, containing types that do not cover any area of memory. However,
all such types lie in trees separate from the tree of memory capability types,
which leads to a simple solution: We order the type trees themselves, and use
this ordering to resolve comparisons between unrelated types. This leads to
the following ordering, with base and size set to a single value (zero for our
purposes) for non-memory capability types:

(tree, base, type,−size)

Additionally, all capability types can have fields designated to be used for
equality comparisons between capabilities of that type. Since we have already
handled comparing different types, we can just add these fields to the end of
the ordering tuple:

(tree, base, type,−size, eq . . .)

We face one final issue: each copy of a capability would be considered equal
with this ordering. But for insertion into the index, copies must also have a
stable ordering amongst each other. For this, we add a tie breaker, using the
capabilities’ in-kernel address:

(tree, base, type,−size, eq . . . , address)

We now have an index into which we can insert and delete capabilities. Let
us now analyse how to perform the operations we require.

First, various operations need to find all copies of a capability, or check
if copies exist. By definition, a copy differs only in its address, which is the
last element in the ordering. Thus, all copies will be siblings in the ordering,

33

so we can find all copies by iterating forwards and backwards from the initial
capability until we reach the edge of the tree or find a non-copy. All capabilities
returned in this fashion will be copies.

Next, revoke and retype need to check if a capability has any descendants.
By construction of the ordering, if a capability has any descendants, the first
will be located immediately after all copies of the capability. We can therefore
search forward past all the copies, and return true if the next capability is a
descendant.

4.3 Range Queries

By augmenting the tree with an end interval as described in Cormen at al. [4, p.
311 – 317] we gain the ability to perform searches for ranges. Note that looking
up capabilities for a single address is also a range search, as an address may
be “covered” my multiple regions in the ordering, e.g. when a capability for
memory containing the address is preceded by siblings not covering the address
before which there is an ancestor that again covers the address.

More concretely, we use range queries in two scenarios:

• When looking for a capability’s ancestor, and

• when looking up capabilities during a frame unmap based on the physical
address stored in page tables as described by S. Gerber [5].

To search for a target capability’s immediate ancestor, we can first search
for a capability earlier in the ordering, and check if it is an ancestor, in which
case it is the immediate ancestor. If this is not the case, we encountered one of
two situations: The target capability has no ancestor, or the target capability
has an ancestor but that ancestor has descendants that precede the target
capability. Using a range query, we can search for the smallest capability that
covers the starting address of the target capability, i.e. that contains the range
from target.base−1 to target.base+1.

4.4 Performance Evaluation

Setup
We will now evaluate the performance of our implementation. Where possible,
we will use an MDB implementation following seL4’s doubly-linked list design
as a comparison to our augmented AA Tree. Both implementations are evalu-
ated by running microbenchmarks in Barrelfish, running in userspace, on the
machine described in Table 4.1.

To gain an overview of MDB performance, we first run randomized bench-
marks. Each measurement is run 1000 times. In each run, the MDB is reset
and a capability slot array of the indicated size is filled with naturally-aligned
RAM capabilities. Measurements taken in Barrelfish indicate that a booted
system may have roughly 3000 capabilities, of which 99% are PhysAddr-derived
capabilities, 20% have copies, 10% have ancestors and 5% have descendants.

For our benchmarks, capabilities are generated randomly such that ap-
proximately 10% of capabilities are copies of a capability in the other 90%

34

Processor 2x dual-core AMD Santa Rosa (Opteron 2200)
CPU speed 2800 MHz

L1 cache 64KB icache and 64KB dcache per core
L2 cache 1MB per core
TLB size 1024 4K entries

Main Memory 8GB

Table 4.1: Evaluation hardware

(i.e. roughly 20% of all capabilities have copies). To approximate a “reg-
ular” distribution of capabilities, we generate the remaining such that many
small capabilities but only few large capabilities are created. The remaining we
therefore generate such that the probability of creating capabilities of a given
power-of-two size is proportional to the negated power, i.e.

P [log2(size) = x] =
{

x < max 2−x−1

x ≥ max 0 ,

where max represents the total amount of memory.

Results
In figure Figure 4.1, we can see the expected O(n) insertion time characteristic
of the linked list implementation, along with the O(log n) behaviour of the
search tree. In the best case, however, the linked list fairs much better: once
the insertion point is found, insertion is simply an update of four pointers and
therefore O(1). Therefore, if the insertion point is near the beginning of the
list, insertion is faster than in the tree, where finding the insertion point is
always O(log n).

With removal from the tree shown in Figure 4.2, the linked list is O(1),
needing just four pointer updates (as with insertion when the insertion position
is known). Meanwhile, the tree implementation is O(log n): not only may
rebalancing be necessary during removal, but the lack of “parent” pointers
requires a regular search for the removal target to build a stack of parents that
need updating.

Iteration as shown in Figure 4.3 also has the linked list performing better,
as an iteration step is a single pointer dereference. At 1024 capability slots à 64
bytes, the L1 cache is filled, and a performance drop occurs when proceeding to
2048 slots. Meanwhile, the search tree shows two modes, with almost an order
of magnitude between them. This demonstrates the cost of leaving the parent
pointer out of the tree nodes: when the successor can be found by traversing
down the tree, the cost is that of a small number of pointer dereferences. When
the successor is reachable this way, a regular “search” for the next element in
the ordering must be performed.

The check for descendants shown in Figure 4.4 shows consistent O(log(n))
behaviour for the tree where the check searches for the next element in the
ordering. Meanwhile, the list implementation is usually a O(1) dereference and
compare, but sometimes needs to iterate further when the starting capability
has copies.

For both implementations, the check for copies shown in Figure 4.5 uses
one forward and back iteration. Because iteration in the tree has two modes,

35

performing two iterations and short circuiting if the first suffices results in three
modes visible in the figure.

The retype loop at the root of the capability type tree means that when
searching for ancestors by iterating backwards, there can always be an ancestor
earlier in the ordering with a bigger size. This results in an O(n) complexity
for the linked-list implementation as can be seen in Figure 4.6. The presence
of an ancestors allows the algorithm to terminate early, but does not reduce
the O(n) complexity, and is not the common case. The tree implementation
meanwhile performs first a search for a predecessor that is not a copy, and
when that fails, a range query as described in section 4.3. Successes of the first
case can be seen as a line of outliers below the dominating case that uses a
range query.

Finally, querying for the smallest capability covering a given address is an
example of a single range query. This operation was not implemented for the
linked-list MDB, but would have required a linear scan through the database.
The results for the tree-based MDB are shown in Figure 4.7.

32 64 128 256 512 1024 2048 4096 8192
count

101

102

103

104

105

106

ti
ck

s

insert_one_worst_range_logy
Augmented AA Tree
Doubly-Linked List

Figure 4.1: Time in ticks to insert an element into an MDB already containing
count elements. The plot shows the top, median and bottom 10% of measure-
ments for each tree size.

36

32 64 128 256 512 1024 2048 4096 8192
count

100

101

102

103

104
ti

ck
s

remove_one_box_logy
Augmented AA Tree
Doubly-Linked List

Figure 4.2: Time in ticks to remove an element from an MDB containing count
elements.

32 64 128 256 512 1024 2048 4096 8192
count

100

101

102

103

104

ti
ck

s

iterate_1_sets_logy
Augmented AA Tree
Doubly-Linked List

Figure 4.3: Time in ticks to iterate forwards once in an MDB containing count
elements.

37

32 64 128 256 512 1024 2048 4096 8192
count

102

103

104
ti

ck
s

has_descendants_box_logy
Augmented AA Tree
Doubly-Linked List

Figure 4.4: Time in ticks to query if an element has descendants in an MDB
containing count elements.

32 64 128 256 512 1024 2048 4096 8192
count

0

500

1000

1500

2000

2500

3000

3500

ti
ck

s

has_copies_sets
Augmented AA Tree
Doubly-Linked List

Figure 4.5: Time in ticks to query if an element has copies in an MDB con-
taining count elements.

38

32 64 128 256 512 1024 2048 4096 8192
count

101

102

103

104

105

106

107

ti
ck

s
has_ancestors_worst_range_logy

Augmented AA Tree
Doubly-Linked List

Figure 4.6: Time in ticks to query if an element has ancestors in an MDB
containing count elements. The plot shows the top, median and bottom 10%
of measurements for each tree size.

32 64 128 256 512 1024 2048 4096 8192
count

102

103

104

ti
ck

s

query_address_worst_range_logy
Augmented AA Tree

Figure 4.7: Time in ticks to find the smallest element containing an address
in an MDB containing count elements. The plot shows the top, median and
bottom 10% of measurements for each tree size.

39

Chapter 5

Conclusion & Future Work

By designing a distributed capability system for use in Barrelfish, we have
seen how the multi-kernel model affects the structure of a capability system for
managing operating system resources. Starting with a local capability system
derived from the system used by the seL4 microkernel, we have demonstrated a
design similar to that found in distributed object systems. With the ownership
property introduced by this design, we are able to synchronize operations; not
just the operations used for manipulation of capability slots, but also operations
on other objects types in the system.

The ability to apply ideas from distributed object systems to multi-kernel
capability systems indicates that this model is well-suited, although care must
be taken when implementing operations that affect many capabilities in the
system. The limited set of operations greatly simplifies this task, as it becomes
possible to cross-compare all operations for interference.

In distributed object systems, care must also must be taken to ensure re-
liability of remote invocations. In Barrelfish, partial failures like undelivered
messages or unresponsive nodes are not currently supported, so all messages
are expected to be delivered eventually, and we have therefore not explored the
handling of such failure types. However, when trying to handle such scenarios,
the limited set of operations might help us again, e.g. if we are able to engineer
all operations to be sufficiently idempotent that they may be rerun under some
kinds of failures.

With the non-sharing nature of the chosen multi-kernel model, the database
of capability relations derived from seL4’s Capability Derivation Tree becomes
split, with only a partial views of the set of capabilities available on each
core. The extensions required to the database to perform queries based on
capabilities not present in the local database have lead us to implement an
alternative tree-based datastructure, the initial version of which has shown
significant performance degredation for previous operations as O(1) algorithms
have been replaced with O(log n) alternatives. Merging the datastructures
would return the performance close to the previous datastructure at the cost
of an increase in capability slot size as information from both structures must

41

coexist within each capability slot.
The introduction of “foreign” capabilities that act as proxies allows capa-

bilities to be used by nodes without direct read/write access to the objects
represented by those capabilities. While this enables spanning the capability
system across nodes that do not share a memory system, it raises the ques-
tions of what invocations are useful when the object cannot be accessed. For
example, it may not be possible to map a remote frame capability into virtual
address spaces on some nodes.

Evaluating the performance of an implementation of our design (an imple-
mentation was begun but not completed for this thesis) would allow further
insight into the scalability of this system, for example with regard to the amount
of lock contention. A count of total cross-core operations performed in com-
mon scenarios for multi-threaded applications might indicate which operations
might need strong optimizations, while measurement of message load caused by
distributed operations could indicate where optimization of multi-cast message
routing is necessary.

42

Appendix A

Hamlet Examples

/** We can define some constants using the " define "
construct

**/
/* Size of CNode entry: */
define cte_size 7;

/** The capabilities of the whole system are listed
thereafter . The minimal definition consists of a
name and an empty body.

**/

cap Null is_never_copy {
/* Null/ invalid object type */

};

cap PhysAddr from_self {
/* Physical address range */

/**
For a populated cap , we need to give the type and
name of each of its fields , such as:
" genpaddr base ;"

In order to implement various comparisons , we
need to specify an address and size for each type
that is backed by memory . The size may be
specified directly with "size" or as " size_bits ".

Additional equality fields can be specified with
an "eq" prefix , as in:
"eq genpaddr base ;"

43

**/

address genpaddr base; /* Base address of
untyped region */

size_bits uint8 bits; /* Address bits that
untyped region bears */

};

cap RAM from PhysAddr from_self {
/* RAM memory object */

address genpaddr base; /* Base address of untyped
region */

size_bits uint8 bits; /* Address bits that untyped
region bears */

};

cap CNode from RAM {
/* CNode table , stores further capabilities */

lpaddr cnode; /* Base address of CNode */
uint8 bits; /* Number of bits this CNode

resolves */
caprights rightsmask ;
uint8 guard_size ; /* Number of bits in guard */
caddr guard; /* Bitmask already resolved

when reaching this CNode */

/**
Address and size may also be specified with some
very limited expressions .

**/

address { cnode };
size_bits { bits + cte_size };

};

cap Frame from RAM from_self {
/* Mappable memory frame */

address genpaddr base;
size_bits uint8 bits;

};

cap DevFrame from PhysAddr from_self {
/* Mappable device frame */

address genpaddr base;

44

size_bits uint8 bits;
};

cap Kernel is_always_copy {
/* Capability to a kernel */

};

45

Appendix B

TLA+ Specification

To illustrate the semantics of the system, we have translated the behaviour
specified in chapter 2 into a TLA+ specification, shown on the next pages.
The system specified is not a distributed system, modelling only one ongoing
operation at a time, and serves only to show that the indicated behaviour fulfils
the invariants and thus any system implementing the same behaviour does so
to.

The specification was model-checked with TLC, a checker for TLA+ spec-
ifications that enumerates all distinct states using a BFS of state space. To
limit the number of states that must be explored by TLC, a very small system
was used as model, with parameters indicated in Table B.1. Figure B.1 shows
that this model was sufficient to execute all actions.

47

CapTypes ∆= {“Null”, “Mem”, Addressable(t) ∆= t ∈ {“CNode”,
“CNode”} “Mem”}

Null ∆= “Null” Moveable(t) ∆= t = “Mem”
RetypeSource(t) ∆= IF t = “CNode” Splittable(t) ∆= t = “Mem”

THEN “Mem” ELSE “” NumCores ∆= 2
Mem ∆= “Mem” NumSlots ∆= 4

PSpaceSize ∆= 3 NumOps ∆= 1

Table B.1: The checked model

The coverage statistics at 2012-04-28 21:27:11
line 159, col 5 to line 159, col 66 of module globalsys: 1369376
line 250, col 8 to line 254, col 45 of module globalsys: 149183136
line 255, col 18 to line 255, col 22 of module globalsys: 149183136
line 260, col 5 to line 260, col 56 of module globalsys: 148875552
line 268, col 29 to line 268, col 33 of module globalsys: 4817280
line 277, col 29 to line 277, col 33 of module globalsys: 130066560
line 280, col 29 to line 280, col 33 of module globalsys: 10917824
line 293, col 29 to line 293, col 33 of module globalsys: 104304
line 307, col 19 to line 310, col 42 of module globalsys: 234624
line 317, col 20 to line 323, col 46 of module globalsys: 56960
line 331, col 29 to line 331, col 33 of module globalsys: 104304
line 334, col 19 to line 342, col 45 of module globalsys: 1204320
line 359, col 9 to line 359, col 54 of module globalsys: 67186558464
line 360, col 18 to line 360, col 22 of module globalsys: 67186558464

End of statistics.
67484617608 states generated, 111426304 distinct states found, 0 states left on queue.
The depth of the complete state graph search is 42.
Finished.

Figure B.1: Coverage of actions.

48

1 module globalsys
2 extends Naturals

4 This module illustrates the invariants specified for the capability system

5 using a specification that matches the pseudocode in chapter 2.

7

9 Requirements for a capability type system:

11 All capability types, and the null type specially identified

12 constant CapTypes
13 constant Null

15 Predicates for retype relations and mutability of ownership.

16 constants RetypeSource(), Moveable()

18 Null must be a valid type.

19 assume Null ∈ CapTypes

21 Use an implicit “NoType” value to indicate a type has no parent.

22 NoType
∆
= RetypeSource(Null)

23 assume NoType /∈ CapTypes

25 With NoType defined, type requirements for RetypeSource become possible:

26 FromTypes
∆
= (CapTypes ∪ {NoType}) \ {Null} Cannot retype from Null

27 assume ∀ t ∈ CapTypes : RetypeSource(t) ∈ (FromTypes \ {t})

29

31 Next, requirements for addressable capabilities:

33 A basic memory type. This constant is only required for setting up the inital state

34 constant Mem

36 Additioal predicates for addressable capabilities

37 constants Splittable(), Addressable()

39 Addressable and Moveable must be defined for all types

40 assume ∀ t ∈ CapTypes :
41 ∧ Addressable(t) ∈ boolean
42 ∧ Moveable(t) ∈ boolean

44 Null is not addressable, while Mem is

45 assume Addressable(Null) = false
46 assume Addressable(Mem) = true

48 Addressability applies to a whole tree of the type forest.

49 assume ∀ t ∈ CapTypes :
50 let p

∆
= RetypeSource(t)

49

51 in p 6= NoType ⇒ (Addressable(t) ≡ Addressable(p))

53 Only addressable caps can be split.

54 assume ∀ t ∈ CapTypes :
55 ∧ Splittable(t) ∈ boolean
56 ∧ (¬Addressable(t))⇒ (¬Splittable(t))
57 ∧ Splittable(t)⇒ Addressable(t)

59 Ancestors(t)
∆
=

60 if RetypeSource(t) = NoType
61 then {}
62 else choose s ∈ subset CapTypes :
63 ∧ RetypeSource(t) ∈ s
64 ∧ t /∈ s
65 ∧ ∀ parent ∈ s : ∃ desc ∈ (s ∪ {t}) : RetypeSource(desc) = parent

67

69 Requirements and definitions for PSpace:

71 constant PSpaceSize
72 assume PSpaceSize ∈ Nat
73 MaxPAddr

∆
= PSpaceSize − 1

74 PSpace
∆
= 0 . . MaxPAddr PSpace should not have to be contiguous, but this

75 simplifies the sepcification.

77 The set of all contiguous address ranges that are subsets of PSpace

78 PRanges
∆
= {r ∈ subset PSpace :

79 ∃ b ∈ PSpace, s ∈ 1 . . PSpaceSize : ∀ a ∈ r : a ∈ (b . . (b + s − 1))}

81 Regions are ranges of PSpace given by a base and size

82 Regions
∆
= [base : PSpace, size : 1 . . (MaxPAddr + 1)]

83 NoRegion
∆
= choose r : r /∈ Regions

84 RegionAddrs(r)
∆
= r .base . . (r .base + r .size − 1)

86

Cores in system. As with PSpace, this should not have to be contiguous, but making it so

simplifies things.

91 constant NumCores
92 assume NumCores ∈ Nat
93 Cores

∆
= 0 . . (NumCores − 1)

95

97 constants NumSlots, NumOps

99 variables slots, operations

50

101

103 Caps
∆
= [type : CapTypes, region : Regions ∪ {NoRegion}]

104 NullCap
∆
= [type 7→ Null , region 7→ NoRegion]

105 assume NullCap ∈ Caps

107 IsCapCopy(cap1, cap2)
∆
=

108 ∧ cap1.type = cap2.type
109 ∧ cap1.region = cap2.region

111

113 Retyped(cap, region, type)
∆
=

114 [type 7→ type,
115 region 7→ region]

117 IsAncestor(child , ancestor)
∆
=

118 ∨ ∧ child .type = ancestor .type
119 ∧Addressable(child .type)
120 ∧ Splittable(child .type)
121 ∧ child .region 6= ancestor .region
122 ∧ RegionAddrs(child .region) ⊆ RegionAddrs(ancestor .region)
123 ∨ ∧ ancestor .type ∈ Ancestors(child .type)
124 ∧ ¬Addressable(child .type)
125 ∨ ∧ ancestor .type ∈ Ancestors(child .type)
126 ∧Addressable(child .type)
127 ∧ RegionAddrs(child .region) ⊆ RegionAddrs(ancestor .region)

129 CanRetype(cap, region, type)
∆
=

130 ∧ type ∈ CapTypes
131 ∧ region 6= NoRegion
132 ⇒ RegionAddrs(region) ⊆ PSpace
133 ∧ ∨ RetypeSource(type) = cap.type
134 ∨ cap.type = type ∧ Splittable(type)
135 ∧ IsAncestor(Retyped(cap, region, type), cap)
136 ∧ ∀ s ∈ domain slots :
137 let scap

∆
= slots[s].cap

138 rcap
∆
= Retyped(cap, region, type)

139 in ∨ scap.type = Null
140 ∨ IsAncestor(rcap, scap)
141 ∨ (Addressable(rcap.type) ∧Addressable(scap.type))
142 ⇒ (RegionAddrs(rcap.region) ∩ RegionAddrs(scap.region)) = {}

144

146 NoOwner
∆
= choose o : o /∈ Cores

148 SlotIds
∆
= 0 . . (NumSlots − 1)

51

150 Slots
∆
= [cap : Caps, owner : (Cores ∪ {NoOwner}), location : Cores]

152 SlotWithCap(slot , cap, owner)
∆
=

153 [slot except ! .cap = cap, ! .owner = owner]

155 SlotWithNullCap(slot)
∆
=

156 SlotWithCap(slot , NullCap, NoOwner)

158 SetSlot(slotid , cap, owner)
∆
=

159 slots ′ = [slots except ! [slotid] = SlotWithCap(@, cap, owner)]

161 CopySlot(destid , srcid)
∆
=

162 SetSlot(destid , slots[srcid].cap, slots[srcid].owner)

164 IsSlotCopy(sid1, sid2)
∆
=

165 IsCapCopy(slots[sid1].cap, slots[sid2].cap)

167 ClearSlot(sid)
∆
=

168 SetSlot(sid , NullCap, NoOwner)

170 SlotInvariants
∆
=

171 Type correctness of slot array

172 ∧ domain slots ⊆ SlotIds
173 ∧ ∀ sid ∈ domain slots : slots[sid] ∈ Slots
174 Only Null caps may not have an owner

175 ∧ ∀ sid ∈ domain slots : slots[sid].owner = NoOwner
176 ≡ slots[sid].cap.type = Null

178 SingleLocationProperty
∆
=

179 A slots location must never change

180 ∧ ∀ sid ∈ domain slots : slots[sid].location = slots ′[sid].location

182 OwnershipInvariants
∆
=

183 All copies of a cap have the same owner

184 ∀ sid1 ∈ domain slots, sid2 ∈ domain slots :
185 IsSlotCopy(sid1, sid2)⇒ slots[sid1].owner = slots[sid2].owner

187 ImmutabilityProperty
∆
=

188 A non-null cannot be modified without first being deleted

189 ∀ sid ∈ domain slots :
190 (∧ slots[sid].cap.type 6= Null
191 ∧ slots ′[sid].cap.type 6= Null)
192 ⇒ IsCapCopy(slots ′[sid].cap, slots[sid].cap)

194

196 CopyReq
∆
= [name : {“copy”}, src : SlotIds, dest : SlotIds]

197 RetypeReq
∆
= [name : {“retype”}, src : SlotIds, region : Regions, type : CapTypes, dest : SlotIds]

198 DeleteReq
∆
= [name : {“delete”}, target : SlotIds]

52

199 RevokeReq
∆
= [name : {“revoke”}, target : SlotIds]

200 RequestTypes
∆
= CopyReq ∪ RetypeReq ∪DeleteReq ∪ RevokeReq

202 CopyOp
∆
= [name : {“copy”}, src : Caps, owner : (Cores ∪ {NoOwner}), dest : SlotIds]

203 RetypeOp
∆
= [name : {“retype”}, src : Caps, region : Regions, type : CapTypes, dest : SlotIds]

204 DeleteOp
∆
= [name : {“delete”}, target : SlotIds]

205 RevokeOp
∆
= [name : {“revoke”}, target : SlotIds, target cap : Caps]

206 OperationTypes
∆
= CopyOp ∪ RetypeOp ∪DeleteOp ∪ RevokeOp

208 OperationStates
∆
= {“running”, “failed”, “succeeded”}

210 NewRequests
∆
= [req : RequestTypes, launched : {false}]

211 LaunchedRequests
∆
= [req : RequestTypes, launched : {true}, op : OperationTypes, state : OperationStates]

212 OperationComplete(o)
∆
= o.state ∈ {“failed”, “succeeded”}

214 Operations
∆
= NewRequests ∪ LaunchedRequests

216 OperationIds
∆
= 0 . . (NumOps − 1)

218 OperationInvariants
∆
=

219 ∧ domain operations ⊆ OperationIds
220 ∧ ∀ o ∈ domain operations : operations[o] ∈ Operations

222

224 CanStart(req)
∆
=

225 case req .name = “copy”→
226 ∧ req .src ∈ domain slots
227 ∧ req .dest ∈ domain slots
228 2req .name = “retype”→
229 ∧ req .src ∈ domain slots
230 ∧ req .dest ∈ domain slots
231 2req .name = “delete”→
232 ∧ req .target ∈ domain slots
233 2req .name = “revoke”→
234 ∧ req .target ∈ domain slots

236 MkRequestOp(req)
∆
=

237 case req .name = “copy” → [name 7→ req .name,
238 src 7→ slots[req .src].cap,
239 owner 7→ slots[req .src].owner ,
240 dest 7→ req .dest]
241 2req .name = “retype” → [req except ! .src = slots[@].cap]
242 2req .name = “delete” → req
243 2req .name = “revoke”→ [name 7→ req .name,
244 target 7→ req .target ,
245 target cap 7→ slots[req .target].cap]

53

247 StartOp(oid)
∆
=

248 ∧ ¬operations[oid].launched
249 ∧ CanStart(operations[oid].req)
250 ∧ operations ′ = [operations except ! [oid] = [
251 req 7→ @.req ,
252 launched 7→ true,
253 op 7→ MkRequestOp(@.req),
254 state 7→ “running”]]
255 ∧ unchanged slots

257

259 SetOpState(o, state)
∆
=

260 operations ′ = [operations except ! [o].state = state]

262 FailOp(o)
∆
= SetOpState(o, “failed”)

263 SucceedOp(o)
∆
= SetOpState(o, “succeeded”)

265 RunCopy(o)
∆
=

266 let op
∆
= operations[o].op

267 in case slots[op.dest].cap.type 6= Null
268 → ∧ unchanged slots
269 ∧ FailOp(o)
270 2other
271 → ∧ SetSlot(op.dest , op.src, op.owner)
272 ∧ SucceedOp(o)

274 RunRetype(o)
∆
=

275 let op
∆
= operations[o].op

276 in case slots[op.dest].cap.type 6= Null
277 → ∧ unchanged slots
278 ∧ FailOp(o)
279 2¬CanRetype(op.src, op.region, op.type)
280 → ∧ unchanged slots
281 ∧ FailOp(o)
282 2other
283 → ∧ let retyped

∆
= Retyped(op.src, op.region, op.type)

284 in SetSlot(op.dest , retyped , slots[op.dest].location)
285 ∧ SucceedOp(o)

287 RunDelete(o)
∆
=

288 let op
∆
= operations[o].op

289 slotid
∆
= op.target

290 slot
∆
= slots[op.target]

291 in case slot .cap.type = Null
292 Deleting Null slots is OK and a no-op

293 → ∧ unchanged slots

54

294 ∧ SucceedOp(o)
295 2slot .location 6= slot .owner
296 Non-owned, just delete

297 → ∧ ClearSlot(slotid)
298 ∧ SucceedOp(o)
299 2(∃ s ∈ domain slots : ∧ s 6= slotid
300 ∧ slots[s].location = slot .location
301 ∧ IsSlotCopy(s, slotid))
302 Have copies on same core, just delete

303 → ∧ ClearSlot(slotid)
304 ∧ SucceedOp(o)
305 2¬Moveable(slot .cap.type)
306 Cannot move, delete all copies

307 → ∧ slots ′ = [s ∈ domain slots 7→
308 if IsSlotCopy(s, slotid)
309 then SlotWithNullCap(slots[s])
310 else slots[s]]
311 ∧ SucceedOp(o)
312 2other
313 Migrate ownership and delete

314 → ∃ s ∈ domain slots :
315 ∧ s 6= slotid
316 ∧ IsSlotCopy(s, slotid)
317 ∧ slots ′ = [c ∈ domain slots 7→
318 case c = slotid
319 → SlotWithNullCap(slot)
320 2IsSlotCopy(c, slotid)
321 → [slots[c] except ! .owner = slots[s].location]
322 2other
323 → slots[c]]
324 ∧ SucceedOp(o)

326 RunRevoke(o)
∆
=

327 let op
∆
= operations[o].op

328 slotid
∆
= op.target

329 slot
∆
= slots[op.target]

330 in case slot .cap.type = Null
331 → ∧ unchanged slots
332 ∧ FailOp(o)
333 2other
334 → ∧ slots ′ = [s ∈ domain slots 7→
335 case s = slotid
336 → slots[s]
337 2IsSlotCopy(s, slotid)
338 → SlotWithNullCap(slots[s])

55

339 2IsAncestor(slots[s].cap, slot .cap)
340 → SlotWithNullCap(slots[s])
341 2other
342 → slots[s]]
343 ∧ SucceedOp(o)

345 CompleteOp(o)
∆
=

346 ∧ operations[o].launched
347 ∧ operations[o].state = “running”
348 ∧ let op

∆
= operations[o].op

349 name
∆
= op.name

350 in case name = “copy”→ RunCopy(o)
351 2name = “retype” → RunRetype(o)
352 2name = “delete” → RunDelete(o)
353 2name = “revoke”→ RunRevoke(o)

355 ResetOp(o)
∆
=

356 ∧ operations[o].launched
357 ∧ operations[o].state ∈ {“failed”, “succeeded”}
358 ∧ ∃newop ∈ NewRequests :
359 operations ′ = [operations except ! [o] = newop]
360 ∧ unchanged slots

362

364 TypeInvariant
∆
=

365 ∧ SlotInvariants
366 ∧OwnershipInvariants
367 ∧OperationInvariants

369 Init
∆
=

370 ∧ slots = [s ∈ 0 . . (NumSlots − 1) 7→
371 if s = 0
372 then [cap 7→ [type 7→ Mem,
373 region 7→ [base 7→ 0,
374 size 7→ MaxPAddr + 1]],
375 owner 7→ 0,
376 location 7→ s%NumCores]
377 else [cap 7→ NullCap,
378 owner 7→ NoOwner ,
379 location 7→ s%NumCores]]
380 ∧ operations ∈ [0 . . (NumOps − 1)→ NewRequests]

382 Next
∆
= ∧ ∃ o ∈ domain operations :

383 ∨ StartOp(o)
384 ∨ CompleteOp(o)
385 ∨ ResetOp(o)

56

386 ∧ true ∨ SingleLocationProperty
387 ∧ true ∨ ImmutabilityProperty

389 Spec
∆
= Init ∧2[Next]〈slots, operations〉

391

393 theorem Spec ⇒ 2TypeInvariant

395

57

Bibliography

[1] Andrew Baumann, Paul Barham, Pierre-Évariste Dagand, Timothy L.
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, October 11-14, 2009, pages 29–44. ACM, 2009.

[2] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hard-
ware support for fast capability-based addressing. In Proceedings of the
Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 319–327, San Jose, California,
October 4–7, 1994. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE
Computer Society.

[3] Maurice D. Castro, Ronald D. Pose, and Carlo Kopp. Password-
capabilities and the Walnut Kernel. The Computer Journal, 51(5):595–
607, September 2008.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press and McGraw-Hill, 2 edition,
September 2001.

[5] Simon Gerber. Virtual memory in a multikernel. Master’s thesis, ETH
Zürich, May 2012.

[6] Steven M. Hand. Self-paging in the Nemesis operating system. In Pro-
ceedings of the third symposium on operating systems design and imple-
mentation, OSDI ’99, pages 73–86, Berkeley, CA, USA, 1999. USENIX
Association.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP ’09,
pages 207–220, New York, NY, USA, 2009. ACM.

59

[8] Donald E. Knuth. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Massachusetts, 1973.

[9] Jonathan S. Shapiro and Samuel Weber. Verifying the EROS confine-
ment mechanism. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 166–176, Oakland, CA, May 2000. IEEE
Computer Society, Technical Committee on Security and Privacy, IEEE
Computer Society Press.

[10] Akhilesh Singhania and Ihor Kuz. Capability management in Barrelfish.
Barrelfish Technical Note 13, Systems Group, ETH Zurich, 2011.

[11] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object
model for the Java system. In USENIX, editor, Proceedings of the Sec-
ond USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), June 17–21, 1996, Toronto, Canada, pages 219–231, pub-
USENIX:adr, 1996. USENIX.

60

	Contents
	Using Capabilities for OS Resource Management
	Motivation
	Review of Capabilities
	Capabilities in seL4
	Capabilities in Barrelfish

	Sharing Resources Across Cores
	Ordering of Operations
	Operations and Contracts
	Behaviour
	Transactions

	Detailed Analysis of Behaviour
	Interference Between Operations
	Memory Reclamation
	Delete Cascades and Reachability

	Capability Lookup
	Review of Search Datastructures
	Ordering
	Range Queries
	Performance Evaluation

	Conclusion & Future Work
	Hamlet Examples
	TLA+ Specification
	Bibliography

