
Master’s Thesis Nr. 161

Systems Group, Department of Computer Science, ETH Zurich

Explicit OS support for hardware threads

by

Andrei Poenaru

Supervised by

Prof. Timothy Roscoe
Reto Achermann
Gerd Zellweger

September 2016 - March 2017

Abstract

Current mainstream processors provide multiple SMT (i.e., simultaneous
multithreading) lanes on top of each physical core. These hardware threads
share more resources (e.g., execution units and caches) when compared to CPU
cores, but are managed by operating systems in the same way as if they were
separate physical cores. This Thesis explores the interaction between hardware
threads and proposes an extension to the Barrelfish OS, meant to improve the
performance of a system by adequately handling SMT lanes. On an Intel Haswell
CPU, with 2-way SMT via Hyper-Threading Technology, each SMT lane had
2/3 of the processing power that was yielded by the physical core with a single
active hardware thread. The multi-HT CPU Driver (i.e., Barrelfish’s microker-
nel) is able to modify the set of active hardware threads with an overhead in the
order of thousands of processor cycles, which means that it can quickly adapt
to the parallelism exhibited by the workload.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Thesis Structure . 5

2 Background 6
2.1 Simultaneous Multithreading . 6
2.2 Intel R© Hyper-Threading Technology 6
2.3 The Barrelfish OS . 8
2.4 Synchronizing Hardware Threads 10

3 Related Work 12
3.1 Elfen Scheduling . 12
3.2 Asynchronous System Calls . 13
3.3 Exclusive Access to a Microkernel 14

4 Interaction between Hardware Threads 17
4.1 Synchronization . 18

4.1.1 Normal Measurement Setup 18
4.1.2 Reduced Measurement Setup 26
4.1.3 Cost of HT Synchronization 30

4.2 The Fhourstones Benchmark . 33
4.3 Context Switching . 37
4.4 Hardware Details . 39
4.5 Conclusions on Hardware Threads Interaction 40

5 Multi-HT CPU Driver 42
5.1 Sharing a Kernel . 42
5.2 The Kernel Stacks . 44
5.3 The BIG-Kernel Lock . 45
5.4 The CPU Driver’s Boot Entry Point 45
5.5 The CPU Driver’s Syscall Entry Point 47
5.6 The CPU Driver’s Interrupts and Exceptions Entry Point 48
5.7 Booting an Application Hardware Thread 50
5.8 The Hardware Thread Control Block 52

1

CONTENTS 2

5.9 Using a Multi-HT CPU Driver 54

6 User Domains on Top of a Multi-HT CPU Driver 55
6.1 Scheduler . 55
6.2 Domains, Dispatchers and Hardware Threads 56
6.3 Core Local RPC and Message Passing 57
6.4 HT Management . 60
6.5 FPU Registers . 64
6.6 Benchmark . 64
6.7 Optimizing the Scheduler . 70

7 Conclusions and Future Work 72

Acknowledgements

I would like to thank Prof. Timothy Roscoe for giving me the chance to work
on the Barrelfish OS. I am also grateful to Reto Achermann and Gerd Zellweger
for their feedback and for the ideas shared during the work on this Thesis.

Last but not least, I would like to thank my parents, who have supported
me throughout my studies, and my girlfriend, who has been by my side during
my Master’s studies.

3

Chapter 1

Introduction

1.1 Motivation

Barrelfish[11] is a research operating system built around the idea that future
systems will contain a large number of CPU cores. This characteristic raises
concerns regarding scalability and OS capability of efficiently managing hetero-
geneous hardware resources.

In such a scenario, the advantage which Barrelfish aims to exploit is the fact
that it is organized as a distributed system. Thus, each core is managed by a
different CPU Driver (i.e., microkernel), meaning that:

• cores can operate independently most of the time (scalability)

• each core can run a specific, optimized version of the CPU Driver (hetero-
geneity)

As Barrelfish is based on the microkernel architecture, a lot of tasks that
would have been accomplished by a monolithic kernel need to be executed in
user space. For this reason, each core has to run a number of user space domains
(equivalents of Linux processes): monitor (the user space extension of the CPU
Driver) and spanwd (domain providing the functionality of spawning other do-
mains) are 2 examples. Also, some cores need to execute domains providing
critical functionality to the system, such as memory servers (usually, a single
mem serv is present in the system).

The multi-kernel approach is a promising way of managing loosely coupled
CPUs: if the actions of one core have a negligible effect on another, then there is
no reason for software to impose a tighter coupling. However, in the case of HTs
(i.e., hardware threads), which share most of the CPU resources, it makes sense
to take into consideration the way in which one HT affects another, enabling
a better utilization of the physical core. Thus, having a single CPU Driver
co-manage multiple HTs is a promising solution for the problem at hand.

4

CHAPTER 1. INTRODUCTION 5

1.2 Thesis Structure

Following this Chapter, which presents the motivation for our work, we will
discuss a series of background elements in Chapter 2 and related work in Chap-
ter 3.

Chapter 4 debuts by proposing a number of models for managing hardware
threads at the operating system level. It then continues with a thorough analysis
of the cost of synchronizing hardware threads and looks at how an HT’s actions
impact the sibling HT’s performance.

Next, the lessons learned up to that point are used to design and implement
an extension to Barrelfish’s CPU Driver, which allows it to manage multiple
HTs. This process is presented in Chapter 5 and is closely related to the insights
detailed in Chapter 6, which describes a method of using the multi-HT variant
of the CPU Driver to transfer the gained processing power to user-space tasks.

In the closing of this Thesis, Chapter 7 draws the appropriate conclusions
and suggests further research topics, meant to refine and extend the presented
work.

Chapter 2

Background

2.1 Simultaneous Multithreading

SMT[9] (i.e., Simultaneous multithreading) is a technique that aims at improv-
ing the throughput of processors by simultaneously executing instructions be-
longing to multiple threads. A CPU supporting SMT must be superscalar, in
order to be able to issue multiple instructions per cycle: otherwise, the processor
in question is implementing, at most, fine-grained temporal multithreading.

Different HTs (i.e., SMT lanes or threads) of the same CPU core have their
own architectural state, meaning that they have different register sets and can
be booted & halted independently. However, the HTs share execution resources,
such as processing units and caheche storage.

The existence of dynamically shared resources (i.e., resources assigned to HTs
based on the current state of the instruction pipelines, and not statically at boot
time) is a double-edged sword for performance. When performing orthogonal
tasks, the usage of multiple HTs leads to a better utilization of the hardware.
However, contending on a shared resource can translate to an overall decrease
in throughput, when compared to a single HT scenario. The latter situation is
unlikely to occur as frequently, because (time consuming) memory operations
on one HT can be exploited by another HT.

Additionally, multiple HTs sharing a lower cache level (than the cache shared
by physical cores) can benefit from faster synchronization.

2.2 Intel R© Hyper-Threading Technology

Intel R© HTT (i.e., Hyper-Threading Technology) is Intel’s proprietary imple-
mentation of SMT. Thus, the facts stated in Section 2.1 hold true and we will
focus on characteristics specific to HTT, as presented in [4].

6

CHAPTER 2. BACKGROUND 7

Figure 2.1: Diagram taken from ”Figure 2-14” of [4]. The larger rectangles
represent physical CPU cores, each having 2 HTs, and emphasize replicated and
shared HT resources.

For a CPU supporting HTT, the processor resources can be placed in 3
categories, according to the level of sharing between HTs:

1. Replicated resources → each HT has its private set. These are:

• the architectural state, which includes:

– the 8 general-purpose registers;

– the control registers;

– machine state registers;

– debug registers.

• instruction pointers;

• register renaming tables;

• return stack predictor;

• 2-entry instruction streaming buffer.

2. Partitioned resources → buffers from which an equal number of entries is
allocated to each HT:

• µop queues after the execution trace cache;

• the queues after the register rename stage;

• the reorder buffer which stages instructions for retirement;

• the load & store buffers.

3. Shared resources → dynamically shared between HTs:

CHAPTER 2. BACKGROUND 8

• caches (unmentioned as belonging to the other categories);

• all the execution units;

• all the other resources.

For the shared resources, [4] notes that the microarchitecture pipeline con-
tains ”several selection points to select between the two logical processors”.
These selection points alternate between the HTs ”unless one logical processor
cannot make use of a pipeline stage” (because of, for example, ”cache misses,
branch mispredictions, and instruction dependencies”). In the latter case (i.e.,
when an HT is blocked), the non-blocked HT ”has full use of every cycle of
the pipeline stage”. Also, it is noted that the execution core and the memory
hierarchy are ”oblivious to which instructions belong to which logical processor”.

2.3 The Barrelfish OS

Barrelfish [11] is an operating system organized as a distributed system. Each
CPU core (or HT, in case Hyper-Threading Technology is enabled) has a differ-
ent CPU Driver. These represent the nodes of the system, communicating via
message passing.

The CPU Driver is equivalent to a microkernel and, in order to accomplish
tasks which fall in the responsibility of a monolithic kernel, it delegates them to
one of:

• the monitor domain (i.e., process): this is the kernel’s extension into user
space;

• user space library code, as part of libbarrelfish;

• driver domains.

Aside from the monitor domain, the spawn helper domain (i.e., spawnd) is
also executed on each core. On top of that, the bootstrap core is tasked with
running a few other important domains:

• mem server → a memory server;

• pci → PCI discovery service;

• skb → the system knowledge base, which also acts as a name server;

• serial → a serial driver;

• fish → a console.

Each domain has a set of capabilities which authorize it to access some
resources (e.g., use a physical frame to back a virtual memory page) or to fulfill
certain actions (e.g., instruct the CPU Driver to create a new capability). The
said set of capabilities form the domain’s CSpace, which is managed by the

CHAPTER 2. BACKGROUND 9

kernel: user space can not directly access the memory in which the capabilities
are stored, but can use capref s (i.e., structures referencing capabilities) in order
to be able to talk about capabilities with the CPU Driver.

The functionality that allows domains to exchange messages is implemented
as interconnect drivers, from which 2 stand out and are intensively used by
Barrelfish domains [2]:

• LMP → local (intra-core) message passing:

In order to send a message, the sender domain invokes a syscall, presenting
the kernel with a capref (pointing out the receiver domain) and the mes-
sage contents. This contents can be comprised of a capref and/or binary
data (opaque to the CPU Driver).

If the receiver is found to be a valid domain, able to receive messages, and
there is enough space to store the payload into dedicated buffers, then the
transfer is carried out: the binary data is just copied into the buffer, while
a transfered capability is copied in the receiver’s CSpace, in a preallocated
slot.

Depending on the flags enabled during the send request and considering
the way in which the transfer was finalized (successfully or with errors), the
kernel makes the decision of which domain to execute next: for example,
the sender domain can specify it’s desire to yield the processor to the
receiver, upon successful transfer, by enabling the sync flag.

Because of the numerous transfers between domains, a separate path
through the kernel has been created, in order to speed up LMPs con-
taining only a small amount (below an architecture dependent limit) of
normal payload (i.e., no capability) and having the sync flag enabled. This
is called the LRPC or fast path.

An important aspect to our thesis, that we would like to emphasize, con-
sists of the fact that, on a core, at any given time, at most 1 of the
following actions can be in progress:

– a domain is running (be it a domain that will send a message, a
domain that will receive a message or another domain);

– an LMP/LRPC transfer is in progress.

• UMP → user-level message passing:

The primary target of UMP is to enable message passing across cores, by
setting-up a shared frame between 2 domains and relying on the cache
coherency protocol to do the actual data transfer. Another difference,
when compared to LMP, is that UMP channels need to be polled, in order
to determine if new data is available.

When the message payload does not include capabilities, then the transfer
only requires the participation of the 2 domains (i.e., sender and receiver),
without the intervention of the CPU Driver. If a capability is to be sent,

CHAPTER 2. BACKGROUND 10

sender
domain

start

sender
monitor

receiver
monitor

receiver
domain

UMP:
normal payload

LMP:
capability

LMP:
capability

UMP:
capability

Sender Core Receiver Core

Figure 2.2: Diagram of a UMP transfer between 2 domains on different cores:
notice the separate paths took by normal payload (i.e., plain binary data) and
capabilities.

however, an additional phase of the transfer is employed, consisting of the
capability being passed through the communicating cores’ monitors (see
Figure 2.2). The reason for the participation of the monitors is that only
these domains are authorized to serialize & deserialize capabilities.

As a disclaimer, we would like to point out that this section is not meant
to cover in full the design and the ideas representing the foundation of Bar-
relfish. It’s purpose is to emphasize certain characteristics of the OS that are
particularly important to the present thesis. An interested reader is advised to
follow-up with the resources referenced in this section.

2.4 Synchronizing Hardware Threads

As expected in a system employing multiple hardware threads, the need to
choose the most suitable synchronization mechanism for a particular scenario
arises naturally. [5] gives some advice on this topic, mentioning the following
alternatives:

• spin loop with pause: useful when the waiting period is expected to be
short.

The usage of pause is a hint to the underlying hardware that the HT is not
doing actual work. This can determine the release of hardware resources
(which can be used by a partner HTs), at the expense of a potential bigger
latency of lock acquiring.

• monitor/mwait : to be used when the waiting period is expected to last
longer (compared to the previous case), as this mechanism saves more
power than pause.

CHAPTER 2. BACKGROUND 11

However, it is more difficult to set up: a block of memory of appropriate
size (according to information exposed by cpuid) and alignment (in order
to fit in its own cache line) needs to be shared between the sleeper and
the thread responsible with triggering the wake-up signal (by writing into
that piece of memory).

• halt : a solution for the case in which monitor/mwait is not available.

The gain is similar to that of monitor/mwait, but there is a higher cost
associated with sending an IPI (i.e., inter-processor interrupt) in order to
wake up the sleeping thread.

Chapter 3

Related Work

3.1 Elfen Scheduling

The paper presenting the Elfen scheduler [13] was an important source of in-
spiration for this thesis, being the primary motivation for the work described
in Chapter 4. Yang et al. aim at developing a method through which they can
improve the utilization of servers, by making use of SMT, but without violating
SLOs (i.e., service level objectives).

In the mentioned paper, the authors consider the scenario of a service, im-
plemented as a latency-critical thread, which has to resolve a given percentage
of requests in less time than a predefined limit of time (e.g., ”99% of requests
must complete within 100 ms” [13]). Additionally, they want to maximize the
total utilization of an N -way SMT processor, by doing work on N − 1 batch
threads.

The proposed solution consists of the following components:

• nanonap → a system call which is designed to park a process on an SMT
lane. This is done in order to relinquish hardware resources to the partner
SMT lane.

The authors argue that existing mechanisms, out of which mwait, WR-
LOS, hotplug and futex are mentioned, do not provide the (entire) required
functionality: they leave the possibility of other threads utilizing the SMT
lane or they do not preserve the context on the parked lane.

nanonap solves the problem by disabling preemption, ensuring interrupts
are enabled (so that the OS scheduler can still replace a napping thread
with another batch thread) and by putting the HT lane to sleep via mon-
itor/mwait.

• the Elfen scheduler → uses nanonap when its scheduling policy dictates
that all the core’s resources should be made available to the latency-critical
thread.

12

CHAPTER 3. RELATED WORK 13

Depending on the employed scheduling policy, Elfen uses SHIM (i.e., a
fine-grain profiling tool) signals and information from the service thread.
The following policies are proposed:

– borrowing idle cycles: batch threads execute only when the service
thread is not running;

– fixed budget : aside from getting to use the CPU while the latency-
critical thread is not running, batch threads may also execute simul-
taneously with it. The authors define a budget (i.e., a time period
during which both types of threads share the CPU) which is refreshed
only when the service lane is idle and the requests queue is empty;

– refresh budget : extends the fixed budget policy by renewing the bud-
get when the serviced request changes and the queue is empty.

Note that the latency-critical thread and the batch threads need to
share a variable containing an ID of the last serviced request;

– dynamic budget : the most aggressive policy obtained by enhancing
refresh budget with the possibility of varying the simultaneous usage
limit of the SMT lanes.

A reference IPC (i.e., instructions per cycle) is obtained by profiling
the latency-critical thread with no interference. Afterwards, during
the actual execution alongside batch threads, the service thread’s
IPC is monitored.

The real budget (i.e., actual co-running budget) is computed by mul-
tiplying a static budget with the ratio ref IPC

ref IPC−LC IPC : ref IPC
denotes the computed reference IPC and LC IPC is the monitored
IPC of the latency-critical thread.

If the real budget is less than the currently co-running duration, then
the batch thread is put to sleep.

3.2 Asynchronous System Calls

The work presented in [10], an asynchronous system call interface, was consid-
ered in this thesis as a helper mechanism for a model in which, on a 2-way SMT
processor, one thread is responsible with kernel mode execution and the other
with running user space tasks. It also served as inspiration for the adaptation of
the LMP (i.e., local message passing) mechanism to the context of a multi-HT
CPU Driver.

In the cited paper, the authors claim that system calls represent the de
facto interface used in order to request kernel provided services. The traditional
design for this mechanism is said to exhibit 2 performance degrading properties:

1. the usage of processor exceptions as the mean of communicating with the
kernel;

2. a synchronous execution model.

CHAPTER 3. RELATED WORK 14

The said properties affect performance by minimizing locality, flushing the
user-mode pipeline and by replacing the user-mode processor state with the
kernel-mode processor state (i.e., processor state pollution).

Two components form the proposed design of exception-less system calls:

1. an exception-less interface through which user space can invoke system
calls;

This can be implemented as a shared memory page between the kernel
and user space, organized as a table of syscall entries.

Thus, invoking a syscall boils down to storing the syscall information
(i.e., the syscall identifier and the associated arguments) into a free entry,
marking it as pending and later checking if it has been marked as done.
All this actions happen in user space, the kernel being only responsible
with executing the syscalls referenced by pending entries and setting their
status as done. The result of a syscall request would be stored in its
associated entry.

Note that, the ability to batch system calls leads to an improved temporal
locality.

2. an in-kernel threading system meant to execute syscalls in an asynchronous
manner.

These threads would pull requests from the shared memory page and
would service them.

Specific cores can be reserved for only executing syscall threads, which
leads to better spatial locality.

The paper at [10] also proposes a M -on-N threading system (i.e., M user
space threads on top of N kernel-visible threads, with M � N), as a means
of relaxing the constraints imposed on the programmer by the asynchronous
nature of the syscall mechanism: user space can just dispatch another thread
when the one currently executing blocks on a syscall invocation, increasing the
number of opportunities for the kernel to service the request.

3.3 Exclusive Access to a Microkernel

Having multiple hardware threads on top of the same CPU Driver determines
the need to ensure exclusive access to some of the kernel’s structures. [7] presents
a comparison of such mechanisms in the context of a microkernel (as is the
CPU Driver powering Barrelfish). The arguments mentioned in this paper are
organized around 2 topics: performance and correctness.

For the performance side, the authors of [7] rely on 3 experiments in order
to show the differences between an (unsafe) lockless implementation (identi-
fied as none), an implementation using a big kernel lock (BKL), one relying
on fine-grained locking (fine) and an implementation of a hardware transac-
tional memory based solution (RTM). The experiments and their results are
the following:

CHAPTER 3. RELATED WORK 15

1. single-core ping-pong → a pair of threads (on the same core) send IPCs
between each other. A single core is used in this experiment, with the
other ones being disabled.

The aim was to surface the contention-free locking cost, meaning that even
the none variant was a correct approach in such a scenario. Thus, as one
might expect, BKL saw the best results, in terms of performance, after
none.

2. multi-core ping-pong → an extension to the first experiment, the single-
core ping-pong is executed simultaneously on a given number of hardware
threads. All hardware threads use the same kernel.

For this case, the throughput of BKL plateaued when using at least 3
cores, and was surpassed by all the other variants at 2 cores on x86 and
at 4 cores on ARM. Also, none, fine and RTM scaled much better than
BKL, without reaching a plateau in the considered configurations.

3. Redis benchmark → a Redis key-value store services requests generated
by using the Yahoo! Cloud Servicing Benchmarks (i.e., YCSB). In this
scenario, Core 0 runs an Ethernet driver, the lwIP TCP/IP network stack
(as a user space process) and a Redis server. The rest of the cores run
only the latter 2 processes, meaning that all the interrupts are serviced by
the driver on Core 0.

The authors of [7] show results suggesting that the throughput is inde-
pendent of the locking strategy and state that ”The results indicate that
for 8-way parallelism, and likely beyond, the choice of lock is essentially
irrelevant to performance” [7].

They also mention that the overall throughput was limited by the network
bandwidth and try to compensate by dividing the throughput by the av-
erage utilization of all cores (resulting in what the authors call the Xput
value). Using Xput instead of throughput shows better scaling with the
number of cores, but still no significant differences between the employed
locking strategies.

Analyzing the presented experiments and their results, we do not agree with
the conclusion of [7] (regarding how the locking strategies affect performance,
in the context of a microkernel):

• ”single-core ping-pong” shows the performance of each lock in a manner
oblivious to the effects on a multi-core scenario;

• ”multi-core ping-pong” is disastrous for BKL, but the authors disqualify
it by stating that it is ”an unrealistic worst-case scenario for the BKL” [7];

• the ”Redis benchmark”, which is the main argument associated with the
previously cited conclusion, can not be considered significant if it just
measures the network bandwidth.

CHAPTER 3. RELATED WORK 16

Thus, we do not think that the performance analysis favors BKL.
However, the much greater advantages brought by such an approach in a

correctness analysis make it a viable solution. [7] presents some arguments for
this in a small section (i.e., Section 2.2), but we would have liked to see more
efforts from the authors directed at the correctness topic, instead of presenting
the unconvincing performance arguments.

Chapter 4

Interaction between
Hardware Threads

As an initial step of this Thesis, we plan to investigate the trade-offs and tech-
niques available on a mainstream Intel processor (such as Haswell or Sandy
Bridge), with 2-way SMT via Hyper-Threading Technology. Some of the ques-
tions are:

• What are the costs of synchronizing SMT threads on the same core using
combinations of monitor & mwait?

• Can SMT threads be used as a cache for register contents, or do the
threads share a single register file?

• Can SMT be turned on and off dynamically for a core (or for a package)
after the machine has booted (i.e., under the control of the OS)?

• What is the performance impact of enabling Hyper-Threading and then
parking all but 1 hardware thread per core in the kernel (e.g., via mwait
or hlt) vs. disabling Hyper-Threading at boot?

In the second phase, we plan to examine a number of alternatives for SMT
usage in the OS, such as:

• A naive approach which simply runs two CPU drivers, one on each SMT
thread. This will be the baseline comparison for the other models;

• Dedicate SMT threads to CPU driver and user-space, and switch between
them upon kernel entry & exit;

• Use SMT threads as caches for user-space dispatcher contexts, and run
only one at a time;

• As above, but hard-wiring one thread to run the monitor dispatcher;

• Run multiple user-space SMT threads at the same time, but only allow at
most one in the kernel at any given time.

17

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 18

4.1 Synchronization

Starting with the first question, we will look into the overhead of synchronizing
HTs and into the way in which the said overhead is related to the coupling
between HTs (i.e., both HTs on the same core, on different cores or even on
different chips). Knowing this cost is critical in order to be able to design a
practical system, which brings real advantages over the alternatives.

Two different measurement setups were used, as a way of improving the
chances that the observed durations are associated with HT synchronization:
the CPU hardware and all the other components of a computing system have
become increasingly complicated, making it easier to overlook certain aspects.
Having different views of the same process provides an extra assurance for the
recorded data.

Additionally, we took into account the overhead of reading the timestamp
counter (via rdtscp) and we discarded the first and last approx. 10% observa-
tions, in order to eliminate the warm-up and cool-down phases of the bench-
marks. The rdtscp overhead was determined by reading the timestamp counter
1001 times, subtracting the first value from the last and dividing the result by
1000. This is the standard procedure used in Barrelfish’s benchmarking support
library, libbench.

In both testing scenarios, 2 hardware threads were made to enter their CPU
Driver (via a specially implemented syscall): note that all unordered pairs of
HTs were considered. As we are referring to the situation of a norarrelmal
Barrelfish instance, each HT had a separate CPU Driver.

In order to minimize external influences, interrupts were disabled (as they
always are when an HT is within the kernel) and the recorded data was out-
putted to the console only at the end of an experiment. Also, the HTs remained
inside the CPU Driver from the first measurement iteration to the last one (for
that specific HT pair).

The following subsections dive into the measurement setups and discuss the
obtained results. Each setup was executed with and without Hyper-Threading
enabled and used either mwait or hlt as the sleeping mechanism (details about
these instructions in Section 2.4), yielding a total of 4 configurations per exper-
imental setup.

A number of iterations are executed for each HT pair and configuration, the
observed data being used to compute the mean and the 95% CI (i.e., confidence
interval) of the wake-up durations. These results are plotted in the form of
heatmaps.

4.1.1 Normal Measurement Setup

Figure 4.1 represents a diagram of the first measurement setup which we em-
ployed. The 2 hardware threads executed 240 iterations, out of which the first
and last 10 were discarded. As the start and stop timestamps are taken by
different HTs with unsynchronized timestamp counters, we needed 2 iterations

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 19

Sleeper Thread Interrupter Thread

tsleep_start

tsleep_stop

twake_start

twake_stopwake-up
duration

Interrupt signal:
memory write or IPI

Figure 4.1: Normal Measurement Setup. The red diamonds represent moments
when the cycle counter is read.

in order to remove the clock skew from the computed duration: HTs alternated
the roles of sleeper and interrupter threads each iteration.

The interrupter thread would wait for the sleeper to enter the parked state,
by doing a tight loop on a shared memory location, after which it would execute
300 nops, in order to give the sleeper some slack after detecting the change of
the shared flag. We also experimented with a higher slack duration, but the
results were unaffected by this variation.

Next, the interrupter would read the timestamp counter, give the wake-up
signal (i.e., write to memory or send an inter-processor interrupt) and take
another timestamp reading.

On the sleeper’s side, the HT would raise the shared flag indicating that
it is ready to go into parked state, read the timestamp counter, after which
it would immediately execute monitor/mwait or hlt, putting the HT to sleep.
The sleeper HT would also take a timestamp reading just after resuming its
execution.

As illustrated in Figure 4.1, the wake-up duration is calculated by subtract-
ing the timestamp value read by the interrupter thread before sending the wake-
up signal from the timestamp taken by the sleeper thread after it has woken up.
The average of 2 such results (with opposite wake-up signal direction) is used in
future calculations (for removing the clock skew): when determining the mean
and the CI.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 20

Normal Measurement with Hyper-Threading enabled

The results, for the cases where Hyper-Threading was enabled, are displayed
in Figures 4.2 and 4.3: the number written in the cell at the intersection be-
tween X (on the horizontal axis) and Y (on the vertical axis) corresponds to
the benchmark being run with HTs X and Y. The difference between the sce-
narios represented by these figures is that the former (i.e., Figure 4.2) used
monitor/mwait as the parking mechanism, while the latter (i.e., Figure 4.3)
employed hlt.

Looking at Figures 4.2b and 4.3b we see that the 95% confidence intervals
are tight around the means, consisting of less than 24 cycles for average values
higher than 1200 cycles (i.e., less than 2% of the means).

The numbers on both axes represent APIC IDs: hardware identifiers of
each HT. As noted in Section 4.4, the benchmarked CPU had 4 cores, each
having 2-way SMT. The APIC IDs encode, in their binary representation, the
hierarchical position of the associated HT: starting from the least significant bit,
this ID is composed of groups of bits identifying the SMT lane in the physical
core, the physical core in the socket and so on. As our experiment considers a
single socket system, we are only interested in separating the HT identifier from
the rest of the APIC ID, which (in this case) consists of a single bit (enough
for a 2-way SMT processor). For example, the HT with APIC ID 510 = 1012
corresponds to the SMT lane with ID 1 and the core with ID 210 = 102: the
2nd HT of the 3rd core, since all IDs are 0-based.

Knowing that the HTs with APIC IDs 0 & 1, 2 & 3, 4 & 5, 6 & 7 share
the same physical core, we can see from the results that tightly coupled SMT
lanes exhibited a longer wake-up duration. At first, we thought this was caused
by the fact that, while the sleeper HT was waking up, the interrupter HT (who
was transitioning into the sleeper role for the next iteration) was going to sleep:
this behavior could have generated contention in the in-hardware mechanisms
used for resource allocation (for example, the partitioned resources mentioned in
Section 2.2). That supposition proved to be false, as no change in the observed
behavior was witnessed when adding a nop loop before the interrupter thread
went to sleep (for the next iteration).

Looking at the big picture, what we saw was that when both tightly-coupled
SMT lanes executed the benchmark they were affected by a longer wake-up
duration. However, this was not the case when one of these lanes was run-
ning normal Barrelfish code. Our guess is that the reason for the observed
behavior was the nature of executed machine-level instructions and/or the way
cache utilization: we knew beforehand that HTs belonging to the same physi-
cal core provide the largest throughput when executing orthogonal operations
(for example, one does integer additions while the other executes floating-point
operations).

Lastly, but probably the most important takeaway from the data displayed
in Figures 4.2 and 4.3, we can derive the number of cycles needed by an HT in
order to resume from sleep:

• ≈ 1250 cycles, for a monitor/mwait induced sleep;

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 21

0 1 2 3 4 5 6 7
APIC ID

7
6

5
4

3
2

1
0

A
P

IC
 ID

1235.281236.081232.561249.641240.281235.721325.88

1238.161239.681233.161226.721244.721236.48 1325.88

1213.681232.921219.241218.561273.72 1236.481235.72

1215.601234.161229.601220.36 1273.721244.721240.28

1214.161214.641295.68 1220.361218.561226.721249.64

1220.081220.20 1295.681229.601219.241233.161232.56

1280.44 1220.201214.641234.161232.921239.681236.08

1280.441220.081214.161215.601213.681238.161235.28
1225.00

1250.00

1275.00

1300.00

1325.00

(a) Duration from wake start to sleep stop (cycles)

0 1 2 3 4 5 6 7
APIC ID

7
6

5
4

3
2

1
0

A
P

IC
 ID

12.91 12.29 7.66 9.69 16.84 9.98 22.78

11.33 11.30 9.00 8.82 13.29 9.25 22.78

6.99 22.10 7.39 7.08 19.82 9.25 9.98

5.99 19.86 12.44 8.19 19.82 13.29 16.84

8.86 12.40 23.07 8.19 7.08 8.82 9.69

9.86 12.49 23.07 12.44 7.39 9.00 7.66

21.51 12.49 12.40 19.86 22.10 11.30 12.29

21.51 9.86 8.86 5.99 6.99 11.33 12.91
8.00

12.00

16.00

20.00

(b) 95% CI for Figure 4.2a

Figure 4.2: Normal measurement of vacherin’s wake-up duration from sleep
induced by mwait (Hyper-Threading enabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 22

0 1 2 3 4 5 6 7
APIC ID

7
6

5
4

3
2

1
0

A
P

IC
 ID

1776.481759.681756.801771.481788.881775.521991.44

1776.601764.801762.281783.001801.601767.64 1991.44

1747.601765.761755.041782.481981.64 1767.641775.52

1778.921749.921761.641752.44 1981.641801.601788.88

1738.521745.401925.20 1752.441782.481783.001771.48

1764.081752.24 1925.201761.641755.041762.281756.80

1912.52 1752.241745.401749.921765.761764.801759.68

1912.521764.081738.521778.921747.601776.601776.48 1750.00

1800.00

1850.00

1900.00

1950.00

(a) Duration from wake start to sleep stop (cycles)

0 1 2 3 4 5 6 7
APIC ID

7
6

5
4

3
2

1
0

A
P

IC
 ID

9.49 9.32 5.77 9.38 17.41 10.65 2.78

11.16 12.03 5.33 16.96 16.10 7.12 2.78

7.56 22.42 6.75 15.35 2.22 7.12 10.65

11.65 11.28 11.37 5.48 2.22 16.10 17.41

5.81 11.80 6.63 5.48 15.35 16.96 9.38

11.70 15.30 6.63 11.37 6.75 5.33 5.77

8.00 15.30 11.80 11.28 22.42 12.03 9.32

8.00 11.70 5.81 11.65 7.56 11.16 9.49
4.00

8.00

12.00

16.00

20.00

(b) 95% CI for Figure 4.3a

Figure 4.3: Normal measurement of vacherin’s wake-up duration from sleep
induced by hlt (Hyper-Threading enabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 23

• ≈ 1800 cycles, for an HT parked via hlt.

Although not displayed in the previously referenced figures, we were also
able to determine the cost of sending a wake-up signal (i.e., a memory stores in
the case of monitor/mwait and an IPI in the case of hlt):

• ≈ 0 cycles, for monitor/mwait ;

• ≈ 550 cycles, for hlt.

This penalty imposed on the interrupter thread was computed by subtracting
twake start from twake stop (see Figure 4.1).

Normal Measurement with Hyper-Threading disabled

In order to see how Hyper-Threading affects wake-up duration, we disabled this
feature in the BIOS and ran the experiment in the same, normal measurement,
setup.

The first thing that we notice when analyzing Figures 4.4 & 4.5 in comparison
with Figures 4.2 & 4.3 is the more stable behavior of the system, both in terms of
the range of observed wake-up durations (for different HT pairs) and in terms of
the confidence intervals: the most clear indication is that the 95% CI is between
4× and 20× smaller. Also, there are no pairs of cores which exhibit distinctive
behavior, like in the case of tightly-coupled HTs (when Hyper-Threading was
enabled).

The main reason why we disabled Hyper-Threading was to see the effect on
wake-up duration, which, in this case, is:

• ≈ 1160 cycles, for monitor/mwait ;

• ≈ 1590 cycles, for hlt.

The values are a bit lower (1160 vs 1250 and 1590 vs 1800, all values in
cycles), which can be accounted for by the contention for shared hardware re-
sources, in the case where 2-way SMT was enabled.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 24

0 2 4 6
APIC ID

6
4

2
0

A
P

IC
 ID

1156.18 1155.86 1160.08

1155.18 1164.34 1160.08

1159.30 1164.34 1155.86

1159.30 1155.18 1156.18
1156.00

1158.00

1160.00

1162.00

1164.00

(a) Duration from wake start to sleep stop (cycles)

0 2 4 6
APIC ID

6
4

2
0

A
P

IC
 ID

2.07 2.40 2.23

5.09 3.75 2.23

5.88 3.75 2.40

5.88 5.09 2.07
2.40

3.20

4.00

4.80

5.60

(b) 95% CI for Figure 4.4a

Figure 4.4: Normal measurement of vacherin’s wake-up duration from sleep
induced by mwait (Hyper-Threading disabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 25

0 2 4 6
APIC ID

6
4

2
0

A
P

IC
 ID

1590.58 1593.74 1603.96

1586.68 1589.30 1603.96

1575.04 1589.30 1593.74

1575.04 1586.68 1590.58
1580.00

1585.00

1590.00

1595.00

1600.00

(a) Duration from wake start to sleep stop (cycles)

0 2 4 6
APIC ID

6
4

2
0

A
P

IC
 ID

1.20 1.32 0.83

1.24 1.31 0.83

1.32 1.31 1.32

1.32 1.24 1.20 0.90

1.00

1.10

1.20

1.30

(b) 95% CI for Figure 4.5a

Figure 4.5: Normal measurement of vacherin’s wake-up duration from sleep
induced by hlt (Hyper-Threading disabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 26

4.1.2 Reduced Measurement Setup

The reduced measurement setup, portrayed in Figure 4.6, represents another
method of measuring the synchronization overhead between hardware threads.
The main difference when compared to the normal measurement setup is that,
this time, only the interrupter thread reads the timestamp counter.

Sleeper Thread Interrupter Thread

sleep start

twake_start

tsleep_stop

wake-up
duration

Interrupt signal:
memory write or IPI

sleep stop
Write to shared memory

propagates

Figure 4.6: Reduced Measurement Setup. The red diamonds represent moments
when the cycle counter is read.

The beginning of a measurement round is the same as in the normal setup:
the sleeper thread raises a flag (by writing into a memory location shared with
the interrupter thread) and goes to sleep (via monitor/mwait or hlt). Mean-
while, the interrupter spins on the shared flag, exiting the loop only after it has
detected the change. Next, the interrupter performs 300 nops (in order to give
the sleeper some time for releasing hardware resources), reads the timestamp
counter (twake start) and sends the interrupting signal (either a memory write
or an IPI, depending on the employed sleeping mechanism). Following, the in-
terrupter thread spins on another flag, which will be raised by the sleeper once
it has resumed execution. Finally, after the interrupter exits the second spin-
ning loop, it determines the value of tsleep stop by reading (again) the timestamp
counter.

Thus, the wake-up duration is computed as tsleep stop − twake start.
Since the 2 timestamps have been taken by the same hardware thread, there

is no clock skew and no need to alternate sleeper and interrupter roles between
the HTs, in order to determine the wake-up duration. However, as a similarity
to the normal measurement setup, we kept the alternating rounds.

We executed 240 rounds for each of the 2 available sleeping mechanisms
(monitor/mwait and hlt) and for 2 hardware configurations (Hyper-Threading

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 27

enabled and disabled). These actions were performed for each (unordered) pair
of threads, meaning that:

• for HT pair (X, Y), the 240 rounds for a given sleeping mechanism and
hardware configuration generates 120 values for the wake-up duration of
HT X (the rounds in which HT Y was the interrupter) and 120 values
for the wake-up duration of HT Y (the rounds in which HT X was the
interrupter);

• in contrast to the normal measurement setup, the reduced setup may (and
often does) yield different values for the wake-up duration of the 2 HTs
which were benchmarked together. Thus, the value placed in the heat-
maps at the intersection between x -coordinate X and y-coordinate Y is
associated with HT X (i.e., the sleeper HT). This is the reason for which
the axes are labeled ”Sleeper APIC ID” and ”Interrupter APIC ID”, as
opposed to just ”APIC ID”.

The means and 95% CIs of the computed wake-up durations are presented
in the following paragraphs.

Reduced Measurement with Hyper-Threading enabled

When Hyper-Threading was enabled, we obtained the wake-up duration data
depicted in Figures 4.7 (for monitor/mwait) and 4.8 (for hlt).

A significant amount of noise can be witnessed in the case of sleeping via
monitor/mwait, with noticeable outliers (such as sleeper 5 & interrupters 6 and
7, respectively): see the 95% CI in Figure 4.7b. The fact that the noise levels
have not increased for the hlt-based sleeping, when switching from the normal
setup to the reduced one, suggests that memory operations are at fault for
the larger confidence intervals: the biggest difference between the 2 sleeping
mechanisms lies in the way in which an HT is resumed (memory write for
monitor/mwait and IPI for hlt).

Overall, we notice higher values for the wake-up durations:

• ≈ 1750 cycles, for monitor/mwait ;

• ≈ 2200 cycle, for hlt.

Compared to the values obtained in similar conditions, but by using the
normal measurement setup, we see that the wake-up durations have increased
by 400− 500 cycles. The most probable cause for this effect is the fact that the
interrupter thread spins on a shared variable while waiting for the sleeper HT
to resume. Only when this variable is changed by the newly waken thread does
the interrupter record tsleep stop.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 28

0 1 2 3 4 5 6 7
Sleeper APIC ID

7
6

5
4

3
2

1
0

In
te

rr
up

te
r A

P
IC

 ID
1571.081689.241699.561689.921722.681890.401516.56

1649.161635.081660.881707.881725.761879.00 1821.12

1659.001603.281655.281623.081703.08 1781.361787.88

1666.041657.361658.481591.16 1829.202115.121778.04

1677.321641.001676.04 1753.601761.281777.241781.76

1607.121671.00 1783.521766.361758.561780.921783.52

1705.80 1758.161764.521784.041778.761816.481820.60

1768.321726.961722.441747.441748.601778.921780.76

1600.00

1700.00

1800.00

1900.00

2000.00

2100.00

(a) Duration from wake start to sleep stop (cycles)

0 1 2 3 4 5 6 7
Sleeper APIC ID

7
6

5
4

3
2

1
0

In
te

rr
up

te
r A

P
IC

 ID

72.28 32.17 42.69 49.81 45.64 349.21 121.92

107.21 57.44 48.58 44.03 46.36 334.73 4.05

46.17 66.10 60.45 76.24 83.41 16.57 18.20

102.88 49.62 55.47 80.10 3.68 465.10 19.15

36.96 55.73 87.94 16.77 17.59 19.06 18.74

48.25 47.62 31.67 17.29 16.27 17.76 17.99

61.16 15.73 14.49 15.75 14.96 14.97 14.99

4.09 17.66 18.10 17.49 18.20 17.21 17.24

80.00

160.00

240.00

320.00

400.00

(b) 95% CI for Figure 4.7a

Figure 4.7: Reduced measurement of vacherin’s wake-up duration from sleep
induced by mwait (Hyper-Threading enabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 29

0 1 2 3 4 5 6 7
Sleeper APIC ID

7
6

5
4

3
2

1
0

In
te

rr
up

te
r A

P
IC

 ID
2120.162143.882152.962154.242174.242128.562289.52

2075.162153.242101.522164.402178.082182.00 2347.40

2155.002123.562153.122178.282298.32 2190.802202.40

2064.082158.202108.122159.96 2311.362194.402206.96

2133.442154.362261.88 2179.962183.002204.002199.32

2044.162148.48 2322.122192.522167.122203.562186.36

2327.52 2180.562185.562197.762203.802232.122222.08

2299.642142.562139.322183.522155.282187.962181.64

2100.00

2160.00

2220.00

2280.00

2340.00

(a) Duration from wake start to sleep stop (cycles)

0 1 2 3 4 5 6 7
Sleeper APIC ID

7
6

5
4

3
2

1
0

In
te

rr
up

te
r A

P
IC

 ID

25.32 26.05 21.90 18.22 20.11 37.07 36.84

17.92 25.31 17.26 22.88 18.13 20.70 9.79

24.03 24.71 18.93 22.82 24.36 22.78 17.81

16.51 25.82 21.01 17.20 23.04 20.87 27.82

17.63 24.47 36.65 16.65 17.33 15.71 19.32

9.45 27.02 1.60 17.49 21.99 19.03 18.26

23.40 19.00 19.42 20.45 18.72 20.26 19.66

16.56 18.28 18.34 18.19 19.39 18.07 25.07

8.00

16.00

24.00

32.00

(b) 95% CI for Figure 4.8a

Figure 4.8: Reduced measurement of vacherin’s wake-up duration from sleep
induced by hlt (Hyper-Threading enabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 30

Reduced Measurement with Hyper-Threading disabled

As we did in the case of the normal measurement setup, we also ran the experi-
ments in the reduced setup with Hyper-Threading disabled. The processed data
is presented in Figures 4.9 and 4.10.

We again observed an increase in the 95% CI when compared to the ex-
periments executed in the normal setup with Hyper-Threading disabled (i.e.,
Figures 4.4 and 4.5): these intervals have increased by ≈ 20× (in the case of
mwait) and by ≈ 10× (for hlt). The difference between the 2 factors support
the idea presented in the previous paragraphs: that spinning on the ”sleep stop
flag” is the reason for the increased measured wake-up durations.

These durations are:

• ≈ 1750 cycles, for monitor/mwait ;

• ≈ 1800 cycle, for hlt.

Comparing the effect of Hyper-Threading in the reduced setup, it seems that
the overhead of the extra spin lock (i.e., the one signaling the sleeper resuming
execution) shadows the difference between waking-up from mwait-induced sleep
while having Hyper-Threading enabled vs disabled : the wake-up durations are
negligible higher when Hyper-Threading Technology was enabled.

For the hlt-based sleep, enabling 2-way SMT increased the wake-up durations
by about 200 cycles in the normal setup, and by 400 cycles in the reduced setup.
This is probably due to the higher cost of doing a tight loop of memory reads
when both HTs of the same core are active.

4.1.3 Cost of HT Synchronization

Taking a step back and looking at the practical differences between the normal
and the reduced setups, we see that:

• the normal setup minimizes the amount of non-benchmarked synchroniza-
tion between HTs, by only ensuring that the interrupter sends the wake-up
signal after the sleeper has entered the low power state;

• the reduced setup adds extra synchronization inherently included in the
measured durations, but provides the extra benefit of only taking times-
tamps from a single hardware thread, which has not just resumed execu-
tion.

The benefits provided by the reduced setup on top of those existent in the
normal setup are significantly reduced:

• the CPU that we used for testing features an invariant timestamp counter,
meaning that: ”The invariant TSC will run at a constant rate in all ACPI
P-, C-. and T-states. [...] the OS may use the TSC for wall clock timer
services” [6].

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 31

0 2 4 6
Sleeper APIC ID

6
4

2
0

In
te

rr
up

te
r A

P
IC

 ID

1694.28 1590.60 1700.76

1685.60 1671.56 1812.20

1702.24 1781.76 1824.00

1792.36 1777.88 1823.40

1600.00

1650.00

1700.00

1750.00

1800.00

(a) Duration from wake start to sleep stop (cycles)

0 2 4 6
Sleeper APIC ID

6
4

2
0

In
te

rr
up

te
r A

P
IC

 ID

56.79 98.90 61.29

60.43 71.77 1.65

59.71 1.14 1.65

1.95 1.52 2.21

20.00

40.00

60.00

80.00

(b) 95% CI for Figure 4.9a

Figure 4.9: Reduced measurement of vacherin’s wake-up duration from sleep
induced by mwait (Hyper-Threading disabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 32

0 2 4 6
Sleeper APIC ID

6
4

2
0

In
te

rr
up

te
r A

P
IC

 ID

1762.12 1781.32 1789.32

1769.80 1788.88 1812.24

1796.44 1807.56 1812.32

1783.04 1786.96 1805.12
1770.00

1780.00

1790.00

1800.00

1810.00

(a) Duration from wake start to sleep stop (cycles)

0 2 4 6
Sleeper APIC ID

6
4

2
0

In
te

rr
up

te
r A

P
IC

 ID

8.55 15.42 2.40

12.71 9.33 1.54

12.59 4.17 3.02

1.69 1.48 2.02 3.00

6.00

9.00

12.00

15.00

(b) 95% CI for Figure 4.10a

Figure 4.10: Reduced measurement of vacherin’s wake-up duration from sleep
induced by hlt (Hyper-Threading disabled)

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 33

• as stated before, because the timestamp counters of the sleeper and the in-
terrupter threads may not be synchronized, we alternate the roles between
the 2 HTs and use 2 measurements in order to compute a single wake-up
duration value (as described at the beginning of Subsection 4.1.1).

Thus, in conclusion, the wake-up durations that we are going to use in the
remainder of this Thesis are the ones determined via the normal measurement
setup. These are summarized in Table 4.1.

Table 4.1: Wake-up durations from sleep induced via monitor/mwait and hlt,
with Hyper-Threading Technology enabled and disabled. All values represent
the number of cycles expected to elapse after the wake-up signal is sent and
until the hardware thread resumes execution.

Sleeping Mechanism
Hyper-Threading

HTT enabled HTT disabled

monitor/mwait 1250 1160
hlt 1800 1590

4.2 The Fhourstones Benchmark

So far in this Chapter, we have focused on the cost of synchronizing SMT
threads, with a few side remarks regarding consequences of enabling Hyper-
Threading. We will now move on to looking at performance related effects of
using multiple hardware threads.

For this purpose, we plan on using the Fhourstones benchmark [12]. This is
a single-threaded integer benchmark which does an alpha-beta search in order
to solve the game of Connect-4. It is (or was, at least, at some point) included
in the Phoronix Test Suite [8].

We think Fhourstones is a good candidate for a benchmarking program since
it’s workload is CPU bound and does not employ floating-point operations. The
amount of required memory for solving a 7× 6 board is about 64 MB, which is
almost entirely used for storing a transposition table.

When executing an instance of Fhourstones, we first run 3 warm-up iter-
ations, by starting to search for a strategy to solve the game beginning at a
given state (i.e., we make a couple of moves, as opposed to leaving the board
completely empty). Afterwards, the Connect-4 game is solved, starting from
an empty board. The measurements from the final (i.e., 4th) iteration are used
when reporting the results.

Overview of the executed experiments

The outcomes of our experiments are depicted, in a concise manner, in Fig-
ure 4.11. The vertical axis shows the average number of kilo-positions explored

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 34

0 | 1 | 2 0 & 1 0 & 2
[mwait: 1]

0
[mwait: 2]

0
[mwait: 0]

1
[hlt: 1]

0
[hlt: 2]

0
[hlt: 0]

1
[no ht]
0 | 2

[no ht]
0 & 2

benchmark runs

0

2000

4000

6000

8000

10000

kp
os

/s
ec

APIC ID
0
1
2

Figure 4.11: The results of running different Fhourstones-based experiments.
The values on the vertical axis represent the number of kilo-positions of the
Connect-4 game processed per second. Beneath the horizontal axis, there are
labels identifying each experiment: the meaning of these labels is explained in
the present Section.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 35

by Fhourstones in each second, while the horizontal axis gives details about the
experiments which we ran. When nothing is mentioned about an HT, it can be
assumed that the HT in question was executing the usual Barrelfish domains
(details in Section 2.3) on top of a standard CPU Driver. Also, by default,
Hyper-Threading was turned on.

Regarding the format used to declare the conditions in which an experiment
was executed:

• ’x | y’ → HTs with APIC IDs x and y were used for the same type of
experiment, but not at the same time (i.e., 2 different experiments were
executed, one for HT x and one for HT y);

• ’x & y’ → HTs with APIC IDs x and y were simultaneously used in the
same experiment;

• ’[mwait: x]’ → the HT with APIC ID x was put to sleep by using moni-
tor/mwait ;

• ’[hlt: x]’ → the HT with APIC ID x was put to sleep by using hlt ;

• ’[no ht]’ → Hyper-Threading Technology was disabled.

To make everything crystal clear, the experiments which we employed are
(starting from the left of Figure 4.11):

1. ’0 | 1 | 2’ → we ran Fhourstones on the HTs with APIC IDs 0, 1, and 2,
respectively, and not at the same time, but in subsequent runs.

2. ’0 & 1’ → 2 (independent) instances of Fhourstones were executed, at the
same time, on HTs 0 and 1;

3. ’0 & 2’ → same as above, but by using HTs 0 and 2;

4. ’
[mwait: 1]

0
’ → ran Fhourstones on HT 0, while HT 1 was parked using

monitor/mwait (the other HTs were running normal instances of Bar-
relfish, as detailed in a previous paragraph of this Section);

5. ’
[mwait: 2]

0
’→ same as above, but with HT 2 being the sleeping thread;

6. ’
[mwait: 0]

1
’ → same as experiment 4, but with the roles of the 2 HTs

(i.e., 0 and 1) being reversed;

7. ’
[hlt: 1]

0
’ → same as experiment 4, with hlt as the sleeping mechanism,

instead of monitor/mwait ;

8. ’
[hlt: 2]

0
’ → same as experiment 5, with hlt instead of monitor/mwait ;

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 36

9. ’
[hlt: 0]

1
’→ variation of experiment 6, with hlt instead of monitor/mwait ;

10. ’
[no ht]
0 | 2

’ → executed a Fhourstones on each of HTs 0 and 2, subse-

quently, not at the same time, and with Hyper-Threading disabled ;

11. ’
[no ht]
0 & 2

’ → same as above, but the 2 Fhourstones instances (1 on each

HT) were executed simultaneously.

Conclusions based on the data gathered from Fhourstones experi-
ments

The reason why we employed such a variety of Fhourstones-based experiments
is that we wanted to look from different angles at the way in which Hyper-
Threading affects performance.

Thus, the first observation that we make is that enabling Hyper-Threading
reduces performance of an HT to about 2 thirds of what an HT can achieve in
a similar context, but with Hyper-Threading disabled. This is true regardless
whether the 2 HTs sharing the same physical core execute an identical workload
or a different one: there is no difference when HTs 0 and 1 executed Fhourstones
instances simultaneously vs. when only one of the 2 HTs executed Fhourstones
and the other one was running the default Barrelfish domains.

Thankfully, however, if one of the HTs of a core is parked by using either
of monitor/mwait or hlt, the remaining HT (on that physical core) gets a per-
formance boost making it on par with the single-HT core (i.e., the core when
Hyper-Threading is disabled): this means that, in practice, we can switch be-
tween having or not the advantages and disadvantages of Hyper-Threading at
runtime, under the control of the OS.

While it is true that enabling Hyper-Threading (and leaving all the HTs on)
takes away a third of the processing power of each HT, the total throughput
of each physical core increases by up to 33%, provided that the workload on
that core is parallelized enough so that both HTs can work independently. This
means that, depending on the degree of parallelism, the performance observed
when enabling Hyper-Threading can be between 66% and 133% of a single-HT
core. Note that, by relying on monitor/mwait and hlt, the lower bound can
be increased to 100% of the single-HT core performance: the insufficiently use
of the parallel HTs can be detected and one of the HTs can be put to sleep
(awaiting to be resumed when the workload can be better parallelized).

In Section 4.1 we explored the differences between monitor/mwait and hlt
and determined that the former is a better candidate, since the duration of
waking-up a sleeping HT and the cost of sending the wake-up signal were both
smaller when compared to the latter option. Based on that finding, and taking
into consideration that the effects of both sleeping mechanisms were indistin-
guishable in our Fhourstones-based experiments, we further recommend the use
of monitor/mwait, when possible.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 37

Finally, we would like to point out that, based on experiments ’
[mwait: 1]

0
’

and ’
[mwait: 0]

1
’ (and, of course, their hlt-based variations), the idea of using

HT switching as an alternative to the classic context switching mechanism seems
promising: when only one of the 2 per-core HTs is awake there is no difference
in processing power when compared to the situation of having Hyper-Threading
disabled on that core. The thing left to consider is how much time is takes to do
the context switch, which we will explore in the next Section (i.e., Section 4.3).

4.3 Context Switching

Moving forward, we are interested in the duration of switching the virtual ad-
dress space (i.e., VAS) of a hardware thread. For this, we executed a special
benchmarking program and measured the operations of interest:

• ’NOP syscall’ → the time it takes to go in and out of the kernel for
executing a syscall which does nothing;

• ’cap invocation’→ the duration of dropping into the kernel via a capability
invocation syscall, determining the type of invocation (which, in this case,
is a nop) and returning from the syscall. Note that the duration of ’NOP
syscall’ is included in ’cap invocation’. Also, as a side remark, capability
invocations are normal Barrelfish syscalls which involve operations linked
to capabilities;

• ’VAS switch’→ the duration of performing a virtual address space switch,
assuming that the target address space has already been constructed.
Again, note that this measurement includes the duration of a ’cap invoca-
tion’, since the interface to a context switch is represented by a capability
invocation;

• ’VAS tagged switch’ → as the previous operation, but with TLB (i.e.,
translation lookaside buffer) tagging enabled: TLB entries are tagged with
a virtual address space identifier and are only considered valid if these IDs
match the currently used virtual address space. The sought for advan-
tage is that some entries in the TLB will not be replaced when switching
between multiple address spaces and, thus, the number of compulsory
cache misses is minimized. In case TLB tagging is not enabled (and no
other alternative mechanism is employed), then the entire TLB needs to
be flushed upon a context switch.

The evaluation that we carried out was composed of a single-threaded do-
main, running on an HT and performing 100 warm-up iterations and 10000
measured iterations for each operation. For the latter 2 operations (i.e., ’VAS
switch’ and ’VAS tagged switch’) a secondary virtual address space was created
and all the mapping from the domain’s initial address space were copied into

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 38

Table 4.2: Durations (top) and 95% confidence intervals (bottom) of virtual
address space context switching related operations. ”NOP syscall” and ”cap
invocation” are included in ”VAS switch” and ”VAS tagged switch”.

Operations Durations (cycles)

HTT
Operation NOP

syscall
cap

invocation
VAS

switch
VAS

tagged switch
enabled 169 321 805 683
disabled 135 202 626 455

95% Confidence Interval of Operations Durations

HTT
Operation NOP

syscall
cap

invocation
VAS

switch
VAS

tagged switch
enabled 0.17 0.29 0.41 0.41
disabled 0.02 0.06 0.08 0.06

enabled disabled
Hyper-Threading Technology

0

100

200

300

400

500

600

700

800

900

du
ra

tio
n

(c
yc

le
s)

Operation
NOP syscall
cap invocation
VAS switch
VAS tagged switch

Figure 4.12: Visual representation of the data in Table 4.2: durations of virtual
address space context switch related operation. Confidence interval are too
small to be visible in this plot.

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 39

the new one. The VAS creation was carried out before the warm-up phase and
an iteration meant that the domain switched from the initial address space to
the new one, and back. The duration was measured for each of the 2 transi-
tions, but we only report the data for switching from the new VAS to the initial
one: the values were about the same and including the durations for the other
transition would have just polluted our tables and plot, without generating any
noticeable insight.

The recorded durations are depicted in Table 4.2 (for an exact overview of
the values) and in Figure 4.12 (for facilitating relative analysis). As can be
observed, we performed the previously described benchmarking process under
2 conditions: with Hyper-Threading (i.e., HTT) enabled and disabled.

First of all, we see that the durations are smaller and the 95% confidence
intervals tighter in the case in which Hyper-Threading was disabled. This has
come to be expected, considering the previous observations which we made
in this Chapter, regarding the effect of using Hyper-Threading. Also, we can
clearly see that enabling TLB tagging helps improve the duration of a context
switch.

However, far more important is to compare, in the context of Hyper-Threading
being enabled, the duration of a virtual address space switching (at most 805 cy-
cles) with the wake-up duration of a hardware thread (at least 1250 cycles).
Looking at the numbers, it is pretty clear that we would face a 55% penalty
during each context switch if we implemented most of the alternatives proposed
at the beginning of Chapter 4 (the alternatives which involve running a single
HT at any given time, and alternating them as a form of context switching).

4.4 Hardware Details

All the experiments presented in this Chapter have been executed on the vacherin
machine, which features an Intel R© Xeon R© CPU E3-1245 v3 with the following
characteristics:

• part of the Haswell processor microarchitecture;

• 3.40 GHz base CPU frequency;

• 4 cores;

• per core L1 caches:

– 32 KB 8-way set associative instruction cache;

– 32 KB 8-way set associative data cache.

• per core L2 cache: 256 KB 8-way set associative;

• shared L3 cache: 8 MB 16-way set associative;

• 2-way SMT via Intel R© Hyper-Threading Technology;

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 40

• although the processor should support Intel R© Turbo Boost Technology,
we found this feature to be unavailable on our system:

– the associated BIOS option is grayed out;

– executing ”cat /sys/devices/system/cpu/intel pstate/no turbo”
on Ubuntu returns ”1”;

– the output of the cpuid command (also on Ubuntu) includes ”Intel
Turbo Boost Technology = false”.

4.5 Conclusions on Hardware Threads Interac-
tion

We have commenced this Chapter with a set of questions regarding the cost
of synchronizing SMT threads, their trade-offs and the flexibility of managing
them. By running a variety of benchmarking programs on top of our target hard-
ware platform, the vacherin machine (see Section 4.4 for hardware details), we
were able to learn the most important characteristics of Intel Hyper-Threading.

Thus, we have come to the conclusion that it takes 1250 cycles for a sleeping
hardware thread to resume execution when it was parked via monitor/mwait
and 1800 cycles when it was put to sleep by using hlt.

The next thing that we did was to use the Fhourstones [12] to help us
understand what penalty does an SMT thread incur when it shares the physical
core. It turns out that, on vacherin, each of the 2 hardware threads of a core is
able to provide at least 66% of the single-threaded core throughput. This means
that, while single-threaded performance goes down by 33%, the total (parallel)
core throughput increases by 33% (depending on the inherent and exploited
parallelism of the workload). Note that all percentages discussed in this Section
are relative to the single-threaded core (i.e., with Hyper-Threading turned off),
unless otherwise stated.

Another aspect which we observed was that, enabling Hyper-Threading and
parking one of the 2 SMT lanes (via either monitor/mwait or hlt) yielded the
same performance on the hardware thread that remained awake as if the latter
HT was the only one on that physical core (i.e., as if Hyper-Threading was
turned off).

The last thing that we looked at in this Chapter was the cost of performing
a context switch (i.e., a change of virtual address space). This is important
because some of the HT management models which we were planning to imple-
ment, as stated at the begging of the Chapter, would have used HT synchro-
nization as a way of switching between tasks.

Sadly, the cost of doing a context switch (roughly 805 cycles, without using
TLB tagging) is substantially less then what we would have to pay (in terms of
wasted cycles) for resuming a sleeping hardware thread.

Based on all the aspects related to Hyper-Threading which we uncovered
in this Chapter, it makes sense to conclude that, from all the proposed OS

CHAPTER 4. INTERACTION BETWEEN HARDWARE THREADS 41

models for managing SMT lanes, only the first and the last one presented at
the beginning of this Chapter make sense. These are:

• the baseline naive approach, of running a CPU driver on each SMT thread;

• the idea of running multiple user-space SMT threads at the same time,
but only allowing at most one in the kernel at any given time (i.e., 2 HTs
sharing a single CPU Driver).

The discarded models (i.e., 1. dedicated SMT threads for kernel and user-s-
pace; 2. SMT threads as caches for user-space dispatcher contexts, with only one
active at a time; and 3. dedicated SMT thread for the monitor) are left aside
because it takes less time to perform a normal context switch (either between
user-space and kernel or between 2 different virtual address spaces).

The following chapters will tackle the challenges of implementing the 2 re-
maining approaches and will evaluate their advantages and disadvantages.

Chapter 5

Multi-HT CPU Driver

Based on the proposed HT models and findings presented in Chapter 4, we will
dedicate this Chapter to looking into the necessary CPU Driver changes, in
order to accommodate the management of multiple hardware threads.

5.1 Sharing a Kernel

There are a number of decisions that need to be made when attempting to share
a single CPU Driver between multiple HTs, and we will point these out in this
introductory Section. As naming conventions, we will use the terms:

• BSHT (i.e., BootStrap Hardware Thread) → the first hardware thread of
a CPU Driver, which is also the HT that initialized the CPU Driver;

• APHT (i.e., APplication Hardware Thread)→ secondary hardware threads,
which boot in an already initialized CPU Driver.

Firstly, as one can predict given our discussion of Peters et al.’s paper in
Section 3.3, we will adopt the invariant of having at most 1 hardware thread
executing CPU Driver code at any given time. This decision is based mostly
on the desire to facilitate a future formal proving process of the CPU Driver’s
correctness, and very little on our belief that one BIG-kernel lock is the best
solution, even for a microkernel, in terms of performance. Nevertheless, the
bounded execution (in terms of duration) of most kernel operations (as shown
in Figure 5.1) supports the single kernel lock approach, as an HT will generally
wait at most a bounded period of time before successfully acquiring the lock.

Given the decision of only allowing exclusive access into the kernel to each
HT, we need to adopt a model for how the kernel stack (or stacks) will operate:
this problem is tackled in Section 5.2. We need to also decide on how to enforce
the exclusive access (Section 5.3) and what operations need to be carried out at
the kernel’s entry points (Sections 5.4, 5.5 and 5.6).

After all these are set up, we will detail how was the core booting procedure
adapted in order to boot an APHT. This is done in Section 5.7, with the goal

42

CHAPTER 5. MULTI-HT CPU DRIVER 43

0 200 400 600 800 1000 1200 1400 1600
Duration (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

Figure 5.1: Cumulative histogram of the quickest 99% of the measured syscalls
and interrupt & exception handlings. Barrelfish was in its idle state when these
measurements were taken. Also, we would like to point out that the remainder
1% of syscalls took much longer (up to 12, 359, 892 cycles): these are operations
which process an arbitrary amount of data (e.g., setting up a virtual address
space) whose implementation could be converted to portions of code executing
in bounded time, but are currently implemented to run in a single stage.

CHAPTER 5. MULTI-HT CPU DRIVER 44

(for now) of being able to get a secondary HT into an existing CPU Driver, after
which the APHT in question will leave the kernel and go to sleep. The work
which extends the capabilities of an APHT to being able to execute user-space
domains is presented in Chapter 6.

We mentioned that the CPU Driver will be shared by multiple HTs, which
means that the kernel’s data will be also shared. While this is fine for most
of the kernel’s data structures, some of them are tied to a specific hardware
thread. Thus, for each HT, we have an HTCB (i.e., hardware thread control
block), meant to encompass the HT-specific data. The most important members
of the HTCB are presented in Section 5.8. This section is placed towards the
end of the Chapter in order to ease the motivation regarding why something
has been added (or not) to the HTCB.

5.2 The Kernel Stacks

When there are multiple hardware threads sharing the same kernel, but never
accessing it at the same time, there are two main approaches one can take
regarding stack management:

1. have a shared stack, ensuring an HT can gain exclusive access to it;

2. use separate, per-HT, stacks.

In between these two options, there are additional alternatives which tend
towards one side or to the other: sharing a stack sometimes and having separate
stacks other times.

Our first decision was to choose one of the two main trends: weighting in
the reduced memory footprint when using a single, shared stack, we chose this
approach. Using multiple stacks would have eased the implementation, but we
considered runtime performance and a clean design more important aspects.

The simplest manner of ensuring that at most one HT can access the shared
kernel stack at any given time is to require that the HT in question holds the
kernel lock (details about the lock in Section 5.3). Thus, the correct order of
these operations is to first acquire the kernel lock and, only afterwards, to make
use of the stack.

From the 3 kernel entry points, only one saves data on the stack before giving
control to the kernel code: the interrupts and exceptions entry point (expanded
upon in Section 5.6). Since the amount of saved data is insignificant compared to
the default Barrelfish kernel stack size (40 bytes, or 48 bytes for some exceptions,
vs 16 kB), we decided to use small per-HT stacks during periods when stack
operations could not be overlapped with the kernel lock being held by the HT.

A similar situation, which also requires per-HT kernel stacks, is the action
of exiting the kernel and returning to user-space via iretq. The reason for this
is that the iretq processor instruction pops some register values (as shown in
Figure 5.2) from the stack. Since an HT releases the kernel lock before returning
to user-space (via iretq, for our current scenario of interest), a race-condition is

CHAPTER 5. MULTI-HT CPU DRIVER 45

created between the exiting HT looking up data on the shared stack and another
entering HT which modifies the stack by pushing data onto it.

In both cases presented in the previous 2 paragraphs, the solution we chose
and implemented is to switch between the private and shared stacks, by changing
the RSP register and copying data from the old stack to the new one. For
example, in the situation of exiting the kernel via iretq, we set the RSP register
to point to the private stack, copy over the stack frame depicted in Figure 5.2
(in Section 5.6) from the shared stack to the private one, release the kernel lock
and, in the end, execute iretq.

5.3 The BIG-Kernel Lock

At this point, the idea of using a lock around the kernel comes natural, as a way
of ensuring exclusive access to the CPU Driver for a single hardware thread at
a time.

We started by using a spinlock, implemented as a loop that executes pause
after failing to acquire the lock (and before retrying). The usage of pause and the
placement of the locking variable in an 128 bytes block of memory (which is also
128-byte aligned) are techniques recommended by Intel in their Optimization
Reference Manual [5].

For the actual lock acquiring, we use an atomic compare and exchange as-
sembly instruction (i.e., lock cmpxchg).

The lock is implemented entirely in assembly and takes a single register
argument: the address of the HT’s HTCB, in RBX. Because we opted for a
single kernel stack per CPU Driver, which may not be used before acquiring the
kernel lock, the address to jump to after the lock has been acquired is stored
in the HTCB (and is set before starting the execution of the lock acquiring
procedure). Also, since kernel code preceding the lock acquiring procedure must
use some registers (e.g., saves a set of registers and uses them to determine the
address of the HTCB), the lock acquiring procedure assumes that it can clobber
the RAX register.

By using the previously described locking interface, we were able to abstract
away the actual implementation of the lock: replacing the spinlock with a queue-
based lock may requires at most minimal changes to the kernel entry points’
code. Regarding this replacement, the person making the change needs to ensure
that all the memory stores performed by an HT exiting the kernel are seen by
any other HT before they see the lock being released: this ensures that a new
HT entering the CPU Driver will find the shared kernel state in a quiescent
state.

5.4 The CPU Driver’s Boot Entry Point

When booting a Barrelfish CPU Driver, the first kernel code executed by a
hardware thread is the one in boot.S. Because the memory location of the

CHAPTER 5. MULTI-HT CPU DRIVER 46

APIC ID may not be mapped in yet, but thanks to the fact that most registers
are not used for other purposes, we retrieve the APIC ID by using the cpuid
assembly instruction:

1. EAX ← 0x0B;

2. execute cpuid ;

3. the APIC ID is stored in EDX;

4. the values of EAX, EBX and EDX have been modified to store other
information provided by the cpuid ’s 0BH leaf.

The HT’s index in the kernel is derived by selecting a suffix (i..e, a substring
containing the least significant bits) of the APIC ID, according to a compile-time
specified variable (i.e., a define):

• NUM HTS PER KERNEL is the name of the constant indicating the
maximum number of HTs a CPU Driver should be able to accommodate;

• the least significant log 2(NUM HTS PER KERNEL) bits of the APIC ID
represent the HT’s index in the CPU Driver:

APIC ID = dd . . . d10 = bb . . . b bb . b︸ ︷︷ ︸
log2(NUM HTS PER KERNEL) bits → HT’s index

2

The reason why we use a suffix of the binary representation of the APIC
ID for HT indexing is that this is the actual format of the APIC ID: the
APIC ID is a concatenation of groups of bits, which identify an SMT lane
on a core, a core on a socket and so on, for as many levels as the CPU
hierarchy has.

• the APIC ID’s bits not belonging to the HT index (i.e., the ones colored
in red in the previous equation) are the same for all the HTs sharing a
CPU Driver.

Knowing the HT index, the size of an HTCB and the base of the array
holding all the HTCBs of a CPU Driver, it is straight forward to determine the
address of a hardware thread’s HTCB: the said array of HTCBs is indexed by
the HT index. Note that, by requiring an additional step of indirection (i.e., read
the address of an HTCB from an array containing the addresses of all HTCBs,
as opposed to the array containing the HTCBs themselves), the constraint of
having all the HTCBs in a statically allocated array can be relaxed: when
booting an APHT in a CPU Driver, that new hardware thread can fill in (into
the array containing HTCB address) the address of its HTCB.

Following the retrieval of the HTCB’s address, the kernel entry continues by
executing the lock acquiring procedure presented in Section 5.3.

CHAPTER 5. MULTI-HT CPU DRIVER 47

Listing 5.1: Determining the address of an HT’s HTCB at the syscall entry
point. A similar method is also used at the IRQ entry point.

1 movq $(X86_64_XAPIC_ID_PHYS + PHYS_TO_MEM_OFFSET), %rbx

2
3 movl (%rbx), %ebx

4 /* %rbx [31..24] = APIC ID */

5
6 shrl $24 , %ebx

7 /* NUM_HTS_PER_KERNEL is a power of 2 */

8 andb $(NUM_HTS_PER_KERNEL - 1), %bl

9 /* %rbx [7..0] = HT index */

10
11 shlq $3 , %rbx /* %rbx = %rbx * sizeof(uintptr_t) */

12 addq addr_addrs_htcbs (%rip), %rbx

13 movq (%rbx), %rbx

14 /* %rbx = address of HTCB */

5.5 The CPU Driver’s Syscall Entry Point

The main difficulty of adapting the syscall kernel entry point (in entry.S) to
simultaneously accommodate multiple HTs is the scarcity of usable registers at
this point of execution: in the single-HT version of the CPU Driver, all the
general purpose registers were used to transfer user-space information to the
kernel. In order to overcome this issue, we reserved a general purpose register
(RBX) for HTCB address computation upon kernel entry.

The method used to retrieve the APIC ID in the boot entry point (via cpuid ;
see Section 5.4) is not a suitable option in the present context, as it overwrites
4 GP registers when reading the APIC ID. However, the syscall entry point
has the added advantage of only being used after the CPU Driver has been
initialized. Thus, we can ensure (during the kernel’s initialization) that the
APIC ID’s memory location (i.e., physical address 0xFEE00020) is mapped in.

So, up to this point of the syscall entry point, we managed to read the APIC
ID into RBX and perform a bitwise and in order to isolate the bits of the HT’s
index. The actual assembly code for these operations is presented in Listing 5.1,
lines 1− 9.

The next problem is determining the appropriate HTCB, considering that
the single available register (i.e., RBX) already contains information (i.e., the
index of the HT, derived from the APIC ID).

While we could have reserved more registers for the purpose of HTCB ad-
dress computation, we decided to avoid this solution: a microkernel is (likely)
required to service a large number of system calls (typically more than an equiv-
alent monolithic kernel) and we wanted to take away as few registers as possible
from the set of registers usable for syscall argument transfer. Reducing the num-

CHAPTER 5. MULTI-HT CPU DRIVER 48

Listing 5.2: The initialization of auxiliary variables meant to facilitate the com-
putation of an HTCB’s address at the syscall entry point. The same information
is also used at the IRQ entry point.

1 struct htcb htcbs[NUM_HTS_PER_KERNEL];

2 struct htcb *addrs_htcbs[NUM_HTS_PER_KERNEL];

3 struct htcb ** addr_addrs_htcbs;

4
5 /**

6 * addr_addrs_htcbs is initialized by the BSHT in the

7 * CPU Driver ’s ’text_init ’ function:

8 */

9 addr_addrs_htcbs = &addrs_htcbs;

10
11 /**

12 * Function used to register an HTCB for the HT with

13 * the given APIC ID.

14 */

15 void htcb_register(struct htcb *htcb , uint8_t apicid)

16 {

17 addrs_htcbs[apicid & (NUM_HTS_PER_KERNEL -1)] = htcb;

18 }

ber of register-stored arguments would have increase stack spilling and would
have reduced the amount of data transferable via an LMP syscall.

Given the mentioned constraints and performance trade-offs, we used a num-
ber of auxiliary variables and managed to compute the address of the HTCB by
reserving a single GP register. These auxiliary variables are shown in Listing 5.2,
alongside details regarding their initialization.

Basically, what we did was to use an additional level of indirection (as was
suggested at the end of Section 5.4), by taking advantage of the fact that one of
the operands for (many) x86 assembly instructions can be referenced in memory.

Thus, we exploited the known pointer size (i.e., 8 bytes on x86-64) in order
to exchange a multiplication (i.e., ”HT index × sizeof (struct HTCB)”) with a
left bit shifting: see line 11 of Listing 5.1. Of course, the bit shifting did not
compensate for the entire multiplication, so we needed 2 additional assembly
instructions: the ones on lines 12− 13 of Listing 5.1.

5.6 The CPU Driver’s Interrupts and Excep-
tions Entry Point

This kernel entry point generated difficulties for our implementation because:

• the context switching mechanism used when an interrupt or an exception

CHAPTER 5. MULTI-HT CPU DRIVER 49

User’s RIP

User’s CS

User’s RFLAGS

User’s RSP

User’s SS

RSP

RSP + 8

RSP + 16

RSP + 24

RSP + 32

Figure 5.2: Top stack frame expected by iretq (i.e., when exiting the kernel
after an exception had occurred). The same stack frame is created when the
kernel begins servicing an interrupt or some exceptions. Other exceptions push
an additional error code after the user’s RIP.

occurs pushes a number of registers onto the stack: SS, RSP, RFLAGS,
CS and RIP. Thus, before any kernel code is executed, the stack frame
looks as in Figure 5.2;

• there is no way to reserve registers, in a manner similar with what we did
for the syscall entry point. This restriction should be easy to understand,
given that the hardware does not save any other registers than the ones
mentioned at the previous bullet point. Also, when and interrupt or an
exception occurs, the CPU immediately switches execution into the kernel,
without running any user-space code in-between.

Firstly, we note that, regardless of how we would have chosen to gain a
GP register for the purpose of computing the HTCB’s address, there was still
the need for a private stack upon kernel entry: the hardware pushes data onto
the stack. Thus, we had to give each HT a private stack, large enough to
accommodate the said pushed data.

In order to specify what stack each HT should use, we took advantage of
the fact that each entry in the IDT (i.e., Interrupt Descriptor Table) specifies
at which address the stack should start when servicing the associated interrup-
t/exception. The stack’s address is not placed directly in the IDT entry, but
is specified as an index in the ist (i.e., Interrupt Stack Table) field of the TSS
(i.e., Task State Segment).

There are 7 slots available in a TSS for specifying different stacks, so, from
this perspective, we could have used the same TSS for all the HTs. Of course,
such a decision would have limited us to at most 7 hardware threads per CPU
Driver or force us to allocated another TSS for each 7 HTs (which would have
increased code complexity without providing a significant advantage).

CHAPTER 5. MULTI-HT CPU DRIVER 50

After weighting the trade-offs, we decided that the added flexibility and
simplicity that comes with having a TSS per HT was more important. If deemed
appropriate, reducing all the TSSes to a single one can be implemented after
we have experimented with different ways of incorporating the idea of multiple
HTs in a single CPU Driver.

Having secured per HT kernel stacks (at the beginning of interrupt/excep-
tion handling) opens the door for a simple solution for gaining the necessary
GP register in order to compute the HTCB’s address: we push the RBX reg-
ister also onto the private stack. Next, the HTCB’s address is determined as
explained in Section 5.5 and the kernel lock is acquired as presented in Sec-
tion 5.3. Afterwards, we switch from the private stack to the shared kernel
stack (to which we now have exclusive access), making sure we copy the data
from the old stack to the new one.

As we have pointed out in Section 5.2, the iretq instruction also uses the
private HT stack, in order to avoid a race condition with another HT entering
the CPU Driver.

5.7 Booting an Application Hardware Thread

For the purpose of booting an APHT into an existing CPU Driver (which was
previously initialized by a BSHT) we started from the mechanism which boots
an APP (i.e., application processor; any but the first CPU core which was
started when the system had been powered on).

In Barrelfish, the utility used to boot an additional CPU is called corectrl
and is structured as a collection of subcommands which are passed through
the command line. For our use case, we added a new subcommand with the
following format:

corectrl -m bootapht <APHT Core ID > <BSHT Core ID >

The ”-m” flag tells corectrl to not wait for a monitor message at the end of
the subcommand’s execution: this is to be expected, since we do not create a
new monitor instance.

The 2 arguments (i.e., ”APHT Core ID” and ”BSHT Core ID”) identify the
HT to boot and the CPU Driver that will adopt the new APHT (by specifying
the CPU Driver’s BSHT). These IDs can be determined by examining the output
of the corectrl ’s lscpu subcommand. An example of such an output generated on
the vacherin machine is presented in Listing 5.3. The 2 IDs expected by bootapht
are assigned to CPUs as they are discovered and added into Barrelfish’s SKB
(i.e., System Knowledge Base).

When an APP boots (regardless if it is a BSHT or an APHT) it will go
through an assembly sled meant to initialize some basic hardware functions: for
example, specifying a GDT and enabling paging. The purpose of this assem-
bly code is to enable the booting CPU to jump into a CPU Driver and start
executing it.

CHAPTER 5. MULTI-HT CPU DRIVER 51

Listing 5.3: An example of the output of the ”corectrl lscpu” command on
vacherin.
The Barrelfish ID is used to identify each CPU Driver, with the valid range of
possible values being 0− 254: Barrelfish ID 255 means that the associated HT
is reserved to be used as an APHT, so it will not have its own CPU Driver, but
will share one with a BSHT (and, possibly, with other APHTs).
Note that in this scenario it is considered that there are 2 BSHTs (i.e., CPUs 0
and 2) and that each CPU Driver can accomodate a total of 4 HTs.

1 > c o r e c t r l l s cpu
2 spawnd . 0 . 0 : spawning /x86 64 / sb in / c o r e c t r l on core 0
3
4 CPU 0 : APIC ID=0 PROCESSOR ID=0 BARRELFISH ID=0 ENABLED=1
5 CPU 1 : APIC ID=2 PROCESSOR ID=1 BARRELFISH ID=255 ENABLED=1
6 CPU 2 : APIC ID=4 PROCESSOR ID=2 BARRELFISH ID=1 ENABLED=1
7 CPU 3 : APIC ID=6 PROCESSOR ID=3 BARRELFISH ID=255 ENABLED=1
8 CPU 4 : APIC ID=1 PROCESSOR ID=4 BARRELFISH ID=255 ENABLED=1
9 CPU 5 : APIC ID=3 PROCESSOR ID=5 BARRELFISH ID=255 ENABLED=1

10 CPU 6 : APIC ID=5 PROCESSOR ID=6 BARRELFISH ID=255 ENABLED=1
11 CPU 7 : APIC ID=7 PROCESSOR ID=7 BARRELFISH ID=255 ENABLED=1

In the case of starting an APHT, we need some information from the CPU
Driver which will manage this HT:

• the kernel’s entry address→ in order to know from which address to start
executing kernel code;

• the address of the PML4 page table→ to ensure the same page mappings
for all the HTs who share a CPU Driver.

These addresses are retrieved by doing an RPC to the monitor of the core
on which corectrl is executing. If that core does not have the same CPU Driver
as the target BSHT (i.e., the BSHT with which we want the new APHT to
share the kernel), then the monitor uses the inter-monitor binding to get the
information from the appropriate monitor : note that the monitor is the user-
space extension of the CPU Driver and, for this reason, there is a single monitor
per CPU Driver instance.

The initialization code of the CPU Driver is able to discern between a BSHT
and an APHT, so it can take the appropriate actions. For example, only the
BSHT needs to add a memory mapping for the physical address of the APIC
ID: the APHT gains that mapping by using the same page table.

As mentioned in Section 5.1, we only focus in this Chapter on bringing an
APHT into an already initialized kernel. The way we use an APHT in order to
execute user-space domains is presented in Chapter 6.

CHAPTER 5. MULTI-HT CPU DRIVER 52

5.8 The Hardware Thread Control Block

The HTCB is implemented as a C structure and is meant to encompass each
hardware thread’s specific data. Thus, it seems natural to add in this control
block the data structures that are directly linked to hardware:

• the HT’s IRQ (i.e., interrupt/exception handling) stack → we discussed
the need for such a stack in Sections 5.2 and 5.6, pointing out that the
context switching mechanism employed when servicing and interrupt/ex-
ception needs to use a stack, without allowing the programmer to ensure
exclusive access to the shared kernel stack.

Regarding the IRQ stack size, we mentioned that at most 48 B would be
pushed upon kernel entry, when servicing an exception which specifies an
error code. The size which we actually allocated for said stack is slightly
larger: 80 B.

First of all, the hardware expects the IRQ stack to be 16-bytes aligned.
Although it can skip part of the stack to ensure this alignment, we thought
it would be better to prevent this memory loss and declare the member
in the HTCB C structure so that it fulfills the requirement. Thus, we
specified the IRQ stack to be 16-bytes aligned (by using “ attribute

((aligned (16)))”) and also made sure that the size is a multiple of
16 bytes (since stacks grow from large addresses to smaller ones).

Secondly, we needed 3 additional slots on the stack for:

– specifying the interrupt/exception’s vector number (used to deter-
mine which interrupt/exception had occurred);

– the return address needed when calling a helper function. The said
function is responsible with determining the HTCB’s address, acquir-
ing the kernel lock and switching to the shared kernel stack;

– saving the RBX register.

So, we need 48 + 3× 8 = 72 bytes, which rounds up (as a multiple of 16)
to 80 B.

• the Task State Segment → details that lead to incorporating this data
structure in the HTCB are presented in Section 5.6 and are related to the
private interrupt/exception handling stack;

• the Global Descriptor Table → Barrelfish uses a static GDT for each CPU
Driver, meaning that there is a fixed number of entries which are initialized
during kernel setup. The only entries that may change are the ones related
to the Local Descriptor Table, when doing a context switch. Thus, having
a private GDT for each HT made it easier to adapt the CPU Driver’s
logic, in order to accommodate multiple HTs;

• the Interrupt Descriptor Table → while most of the entries of the IDT are
the same for all the HTs sharing a CPU Driver, there may be situations in

CHAPTER 5. MULTI-HT CPU DRIVER 53

which we want to have an interrupt vector for a specific HT: for example,
if an HT goes to sleep via hlt, waking it up requires some other HT to
send an IPI. Thus, we may only want to have the vector (for the wake-up
IPI) valid when the HT is actually asleep.

We would like to point out that it is possible to keep some of the previ-
ously mentioned HTCB members shared between all the HTs of a CPU Driver.
However, we saw 2 main reasons for making them HT-private:

1. Sharing them would have made the process of experimenting with different
CPU Driver designs more difficult, because it may have made it more
cumbersome (or even impossible) to implement specific features: consider,
for example, if we wanted to enable HT specific interrupt handling and
there was a single IDT per CPU Driver;

2. As there is no need to keep the data (in the previously mentioned data
structures) synchronized between all the HTs (because they are mostly
static), having to share these structures would have required more signif-
icant changes to the way the CPU Driver manages them: for example,
having a single GDT has the downside that it must be able to accommo-
date distinct TSS and LDT slots for each HT.

Other fields of the HTCB structure are:

• an integer holding the APIC ID → this value is different for each HT;

• a boolean revealing if the HT is also the BSP (i.e., bootstrap processor);

• a pointer to the Dispatcher Control Block of the last dispatched task →
HTs simultaneously dispatch different user-space tasks (the implementa-
tion of this functionality is detailed in Chapter 6);

• pointers to the currently dispatched task and to the last dispatcher that
made use of the FPU→ similar motivation as in the previous bullet point;

• a boolean which is only true if the HT is the BSHT;

• slots for saving registers → employed when switching tasks (in the IRQ
entry point), after the kernel lock had been acquired: the registers are
needed in the loop that copies data from the private stack to the shared
one;

• the base address and the size of the currently used Local Descriptor Table
→ in order to prevent the rewriting of the GDT entry referencing the
LDT, when the same LDT is used;

• additional boolean and integer fields related to the CPU Driver’s logic →
these are used in similar ways as the previously mentioned ones, in the
sense that they maintain the state of a given HT.

CHAPTER 5. MULTI-HT CPU DRIVER 54

5.9 Using a Multi-HT CPU Driver

Having a working implementation of a CPU Driver that is able to simultaneously
manage multiple HTs is not the main target for this Thesis, but rather a tool
to be used in order to improve certain aspects of Barrelfish (e.g., increase the
throughput of executed user tasks).

At the beginning of Chapter 4 we have proposed a number of models for using
multiple HTs which share a CPU Driver. Running experiments and analyzing
the generated data, we have come to the conclusion that only some of the initial
models make sense, primarily because of the overhead of synchronizing hardware
threads: Section 4.5 draws the related conclusions.

This Chapter has presented the process of adapting a normal (i.e., single-HT)
CPU Driver to a multi-HT context. Based on this capability, and taking into
consideration the lessons learned in Chapter 4, we will dive into the challenges
of exposing the additional processing power to user-space in Chapter 6.

Chapter 6

User Domains on Top of a
Multi-HT CPU Driver

In this Chapter, we will continue building upon the multi-HT CPU Driver (pre-
sented in Chapter 5) by enabling all the hardware threads to execute user-space
code. Thus, we will start from the extension of Barrelfish which is able to boot
additional HTs into an already initialized CPU Driver and to perform the neces-
sary setup for these HTs. However, the modifications which we have presented
in the previous chapters do not allow these HTs to do any useful work, as they
are halted after executing the kernel initialization code path.

The target which we are now aiming for is to be able to execute multiple
user-space dispatchers at the same time, one on each HT managed by a CPU
Driver.

The following Sections focus on specific areas which are of significant impor-
tance for running multiple user-domains at the same time, on top of a multi-HT
CPU Driver. Towards the end of this Chapter (i.e., in Section 6.6), we discuss
some experiments meant to explore differences between our modified version of
Barrelfish and some setups involving single-HT CPU Drivers. Based on the ob-
servations generated by said experiments, we propose a scheduler optimization
in Section 6.7.

6.1 Scheduler

The initial plan was to start the implementation by adapting the RR (i.e.,
Round-Robin) Scheduler, as it has a simpler logic when compared to the RBED
(i.e., Rate-Based Earliest Deadline) Scheduler [3]. Unfortunately, attempting to
compile the CPU Driver wit the RR scheduling policy resulted into a compilation
error: there exists a portion with unimplemented KCB (i.e., Kernel Control
Block) related logic.

Considering that the missing code is not part of this Thesis’s focus and that
we would have exchanged the RR Scheduler with the RBED one at some future

55

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 56

moment, we decide to start directly with RBED.
Analyzing the logic used by the RBED Scheduler for deciding the next do-

main to be dispatched, the primary multi-HT adaptation issue that stood out
was the time value associated with a particular moment. The problem lies in the
fact that each HT has an independent timestamp counter. Considering that the
system’s real-time clock has a much lower resolution and that there is no direct
way of determining the time offsets between the HTs (aside from executing a
dedicated algorithm that uses low-latency thread synchronization operations),
we chose to assign the role of the time keeper to the BSHT (i.e., bootstrap
hardware thread) of each CPU Driver.

Thus, this means that only the BSHT updates the value of the kernel now
variable, which stores the number of milliseconds since the BSHT booted-up.
Compared with implementing and executing a timestamp synchronization algo-
rithm, our choice was faster to implement and gave the chance to see how far we
can get with such a simplistic approach: the schedulers implementation includes
time-related assertions, so we would have a clear indication if something went
wrong (e.g., missed deadline), in the form of an assertion error. So far, no such
timing exception has been raised.

In this Section, we have pointed out issues and solutions related to being
able to use the RBED scheduler in a multi-HT CPU Driver. However, a more
interesting and vast research area is represented by the analysis of potential op-
timizations of the scheduling logic. We discussed about this and have dedicated
a section to such an optimization proposal (i.e., Section 6.7). However, given
the time constraints for this Thesis, we decided it is best to leave the scheduler
optimization topic for future work.

6.2 Domains, Dispatchers and Hardware Threads

As explained in Barrelfish’s Architectural Overview Manual [1] (in the section
dedicated to dispatchers), an application wanting to execute on a particular
core (i.e., on top of a CPU Driver) has to have a dispatcher on that core. This
means that the dispatcher represents “the unit of kernel scheduling” and that
dispatchers are owned by a single CPU Driver. As a side-note, we would like to
point out that applications requiring threads in order to implement their logic
are not obliged to use multiple dispatchers: green threads are implemented as
part of libbarrelfish.

Transitioning to a context in which a CPU Driver is shared by multiple HTs,
we need to address the relation between dispatchers and HTs. This boils down
to answering 2 questions:

1. Should a dispatcher be pinned to a particular HT or can it move freely
between HTs, based on current CPU usage?

2. Can a dispatcher be simultaneously used by multiple HTs or should it be
owned by at most a single HT at any given moment?

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 57

Focusing on the first question, it is clearly desirable to be able to use the
available HTs at their maximum potential, with as little constraints imposed on
the scheduler as possible. However, it may be a requirement of the application
to always be executed by the same HT, in order to, for example, be able to
receive interrupts at a fixed APIC ID. Thus, a promising solution is to allow
dispatchers to migrate between HTs (of the same CPU Driver), but have the
option of pinning them to a particular HT.

Regarding the second question, allowing multiple HTs to simultaneously use
the same dispatcher creates concurrency problems and the need to rethink a
dispatcher’s design and functionality (as it would no longer be the unit of kernel
scheduling). Considering this, alongside the facts that per-HT dispatcher data
would be required and that no extra functionality would be added, we decided
to make a dispatcher available to a single HT at a time.

So, summarizing this section, in the multi-HT CPU Driver extension of Bar-
relfish, dispatchers can move between HTs as the scheduler decides best (this is
the default option, but the functionality of pinning to a particular HT is avail-
able). Also, a dispatcher can have at most 1 owning HT at each given moment.
Implementation-wise, we have wrote part of the pinning mechanism, which is re-
quired to keep track of a dispatcher’s HT owner: no current Barrelfish domain
makes use of HT pinning and the remaining code is trivially implementable.
Taking ownership of a dispatcher is as simple as a kernel mode assignment,
because at most a single HT can execute kernel code at each moment.

Thus, we leave to future work the study of trade-offs of multi-HT dispatchers
and other domain-dispatcher-HT setups.

6.3 Core Local RPC and Message Passing

Even before implementing the initial version of a multi-HT CPU Driver (that
can dispatch multiple user domains simultaneously), we suspected that there
will be problems with the LMP (i.e., local message passing mechanism, meant
to be used for transferring messages between user domains executing on top of
the same kernel).

Local Message Passing in a Single-HT CPU Driver

Previously, at most a single user domain ran at each moment of time, on a
particular core. This means that no user domain ran when the only HT managed
by a CPU Driver was executing in kernel mode.

When a domain wanted to send a message to another domain (on the same
core), the sender could just drop into the kernel, perform some sanity checks
(e.g., if the capability referencing the receiver pointed to a valid domain, if there
was enough space in the receiver’s buffer) and just dispatch the receiver domain.
Thus, assuming that the sender had initiated a valid message passing request
(i.e., valid receiver, valid destination slot), the control would be transferred to
the receiving domain.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 58

Note that this did not mean that the transfer would also be successful: the
receiver’s buffer could have been full or the receiver domain could have been
disabled (i.e., in a state in which the domain can not receive messages). In such
a case, an error would be reported to the sender, but the receiver domain would
still be the one dispatched upon kernel exit.

Adapting Local Message Passing to a Multi-HT CPU Driver

Having multiple HTs based on the same CPU Driver means that more than one
user domain can execute code at a given time. For LRPC (i.e., local remote
procedure call) & LMP, this translates into concern for a situation in which the
receiver domain is already executing (on another HT).

One solution to this problem, which is currently implemented, involves defin-
ing a new error code for such a scenario: SYS ERR LMP TARGET RUNNING.
This error code is returned to the sender domain in a manner similar the one in
which the sender is informed that the receiver domain does not exist. Thus, the
burden of retrying the message passing falls onto the sender domain. Depend-
ing on the latency constraints for that particular inter-domain data transfer,
the sender can loop and retry until the transfer emerges successfully, or it can
yield the HT to another (user-space) thread or to another domain.

For non-urgent message passings, yielding is a good option. It can be im-
proved by making the CPU Driver save the message in some buffer: the normal
receiver buffer can only be used if it is read-only for the receiver and if the said
buffer is expected to be modified (by the message delivery mechanism) while
the receiver is running.

If the CPU Driver has nowhere to store the message while the receiver is
running, 2 other alternatives can be employed:

1. The sender’s HT can sleep (via monitor/mwait or hlt) until the receiver’s
HT can release the receiver dispatcher. The advantage would be that other
HTs may use the sender HT’s hardware resources to accomplish useful
tasks, better than the sender wasting them by looping on the failing send
operation;

2. Ultimately, if latency is critical for the transfer in question, then the sender
HT can send an IPI (i.e., inter-processor interrupt) to the receiver’s HT,
making the receiver domain available for execution on the sender HT.

Having the previously mentioned alternatives in mind, we started exper-
imenting with booting-up more than 2 HTs per CPU Driver. What we ob-
served was that the system would stall and that domains would make no fur-
ther progress when reaching 4 HTs. Listing 6.1 contains the output of the ps
command (note that ps does not display information about special Barrelfish
domains, such as init, monitor, mem server, ramfsd, skb).

The reason for this deadlock was the enormous rate (≈ 100%) of failing LMP
transfers, caused by the fact that the receiver was running on a different HT
than the sender. We solved the problem by implementing a mechanism which

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 59

Listing 6.1: ps output on Barrelish’s BSP core.

1 > ps

2 DOMAINID STAT COMMAND

3 1 Z corectrl auto boot 2 -a loglevel =4

4 2 R pci auto

5 3 R serial

6 4 Z angler serial0.terminal xterm

7 5 R lrpc_bench server

8 6 R fish

puts APHTs (i.e., application hardware threads) to sleep. This mechanism is
detailed in Section 6.4.

Optimizing Local Message Passing to a Multi-HT CPU Driver

However, far more important was the observation that, in order to have a better
utilization of the processing power provided by HTs, we need to have a model
which can deliver LMP messages even when the target domain is executing.

As struct lmp endpoint kern (presented in Listing 6.2) is modified by both
the CPU Driver (when delivering an LMP message) and by the user-space do-
main (when storing an LRPC payload or when updating the CNode reference for
storing capabilities transfered via LMP), we think the best solution would be to
have a separate buffer, meant to store LMP messages received while the target
domain is running. The alternatives would be to either use atomic operations
when modifying the buffer or to protect it with a lock. Since an LMP message
can contain both normal payload of variable length (i.e., binary, opaque data,
from the kernel’s viewpoint) and a capability, the type of needed atomic opera-
tions is not actually available. Using a succession of simple atomic operations
is also not a good solution, because it could leave the buffer in an inconsistent
state at specific moments. As for the locking strategy, it creates the possibility of
user-space blocking the kernel, by acquiring the lock and holding it indefinitely.

The instance of struct lmp endpoint kern meant to store the LMP messages
received while the target is running (on another HT) would, ideally, only be
modifiable by the CPU Driver. However, this is not a must, as a user domain
modifying said data would only hurt itself.

Another choice we have to make when working with 2 LMP buffers is the
way in which the user domain will get access to both of them, in order to process
the messages. Rotating the 2 buffers was an idea, but it was discarded because
it can lead to message reordering. Thus, we decided to go with the approach
of copying messages from the kernel’s LMP buffer to the other buffer. This can
be done when the LMP channel’s dispatcher is not currently dispatched: for
example, when the domain is being evicted from the HT. If message latency is
of concern, an IPI can be sent to the target HT, in order for it to do the message

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 60

Listing 6.2: The C struct in which LMP messages are delivered.

1 /// Incoming LMP endpoint message buffer

2 struct lmp_endpoint_kern {

3 ///< CSpace address of CNode to receive caps

4 capaddr_t recv_cptr;

5
6 ///< Slot number in #recv_cptr

7 capaddr_t recv_slot;

8
9 ///< Valid bits in #recv_cptr

10 uint8_t recv_bits;

11
12 ///< Position in buffer (words delivered by kernel)

13 uint32_t delivered;

14
15 ///< Position in buffer (words consumed by user)

16 uint32_t consumed;

17
18 ///< Buffer for async LMP messages

19 uintptr_t buf[];

20 };

copying.
In this Section, a large number of solutions have been proposed, for a variety

of encountered problems. We highlighted the most important characteristics and
categorized them as pluses and minuses, but only implemented some of the ideas.
The study of practical scenarios showcasing the advantages and disadvantages
of each approach is a good candidate for an extension to this Thesis.

6.4 HT Management

In the following paragraphs we will look into the logic that triggers the actions
of booting an HT, resuming an HT and putting it to sleep.

Starting with the first action, we would like to point out that there is a
notable difference between the ways in which BSHTs and APHTs are added
to a Barrelfish instance. The former (i.e., BSHTs) are booted automatically
upon discovery, by the kaluga domain, which issues the boot subcommand of
the corectrl domain. Also, as the naming suggests (i.e., bootstrap hardware
threads), each BSHT gets an uninitialized copy of the CPU Driver.

On the other hand, APHTs are currently booted up by executing the bootapht
subcommand of corectrl manually: implementing the same auto-trigger as in
the case of BSHTs is a trivial task, but we wanted to make the exploration of

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 61

different HT-to-CPU Driver assignments as straightforward as possible. The
fact that there is currently no piece of coded logic which boots APHTs means
that kaluga does not need to be recompiled in order to explore different HT
setups: you just point an APHT towards an initialized CPU Driver by issuing
corectrl ’s bootapht subcommand in fish (i.e., the de-facto Barrelfish shell).

HTs go to sleep by executing the wait for interrupt function, which has been
adapted to release the kernel lock before running hlt. For BSHTs, this can only
happen when they have no domain to dispatch. Since the BSHT is the time
keeper of its CPU Driver, the APIC timer is never masked when a BSHT goes
to sleep: the BSHT will be woken up, at latest, by the next timer interrupt.

For APHTs the same hold true, with the minor difference that their timers
are masked when going to sleep. Additionally (from the case when no domain is
available for dispatching), other situations can also make an APHT go to sleep:

• if the number of subsequent LMP messages that fail with
SYS ERR LMP TARGET RUNNING (with not interleaved transfers that
end differently) exceeds a predefined limit (currently set to 1,000,000).
This happens because we can not deliver an LMP message to a running
domain;

• when the BSHT is forced to sleep because it has no domain to dispatch,
it raises a condition in the CPU Driver which tells the first APHT to
notice the flag that it should (temporally) halt execution. The mentioned
condition is checked by APHTs during each timer interrupt handling. We
made this decision because it is better to keep the BSHT awake whenever
possible (as opposed to delegating the user tasks to an APHT), since it
already wakes up at the end of each time slice.

As we already mentioned, a BSHT wakes from sleep as a result of an interrupt
and it sleeps with the timer unmasked in order to ensure that an interrupt occurs
at least once a time slice. This is mainly due to its important role in the CPU
Driver, similar to that of a leader. On the other hand, APHTs are only useful if
they can exploit the parallelism of user-space tasks, improving the throughput
of the system. Thus, an event which can be taken into account when deciding to
wake up an APHT is that of a dispatcher being marked as runnable: this holds
true because we are still in the context of single-threaded dispatchers, which
can be executed by at most an HT at a time.

The logic leading to an HT entering parking state is depicted in Figures 6.1
(for BSHTs) and 6.2 (for APHTs).

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 62

Need to schedule
a dispatcher

Can a dispatcher
be scheduled

on this BSHT?

Do dispatch

Is the flag (indi-
cating an APHT

should sleep)
raised?

Raise flag

Wait for interrupt

Yes No

Yes

No

Figure 6.1: Logic use by a BSHT when deciding if it should enter sleep. The
BSHT will be woken up, at latest, by the next timer interrupt.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 63

Need to schedule
a dispatcher

Timer interrupt

Can a dispatcher
be scheduled

on this APHT?

Is the flag (indi-
cating an APHT

should sleep)
raised?

Do dispatch Handle interrupt

Clear flag
Wait for interrupt

Yes
No

No Yes

Figure 6.2: Logic used by an APHT when deciding if it should enter sleep.
The flag is raised by the BSHT (if it has no domain to dispatch) or by any HT
noticing a large number of failed LMPs, caused by the fact that the receiver
domain had been executing when message delivery was attempted.
A sleeping APHT is woken up when a dispatcher becomes runnable.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 64

6.5 FPU Registers

In the single HT per CPU Driver scenario, considering that most user domains
did not make use of the FPU (i.e., floating-point unit), a lazy approach was
employed for dealing with FPU context switches. This involved maintaining
a reference to the last domain that accessed the FPU and using a FPU trap
(i.e., an interrupt that triggered when the trap was enabled and user-space code
accessed the FPU) to lazily restore the FPU state.

Now, with domains being dispatched on multiple HTs, depending on the
current system load, a more eager approach for FPU context switching was
necessary. Continuing to use a lazy solution would have made it complicated
and impractical for a domain to recover it FPU state, at need, from another
HT.

For the purpose of maintaining the FPU state of a domain, we have imple-
mented the fpu context switch function, which is responsible with:

• saving FPU registers when the user-domain executed by the HT changes;

• enabling the FPU trap when the HT’s domain changes and the new domain
is enabled: user code, part of libbarrelfish, takes care of the FPU state when
the domain had been in disabled state at the moment of its last eviction;

• restoring the FPU trap.

On the LRPC path, we are currently relying on the same C function (i.e.,
fpu context switch). This aspect could be optimized in the future, by adapting
the logic to the situation of an LRPC and implementing it directly in Assembly
(as is most of the LRPC fast-path).

6.6 Benchmark

As a natural step following the addition of the multi-HT management function-
ality to Barrelfish’s CPU Driver, we ran experiments aimed at determining the
effects of using multiple HTs on top of the same kernel. For this, we considered
3 CPU Driver-HT configurations and 2 workloads.

The first configuration represents the baseline: a single HT is managed by
each CPU Driver. Since the machine on which we are executing the experiments
is vacherin (see hardware details in Section 4.4), there are 8 HTs available when
Hyper-Threading Technology is enabled, meaning that there are 8 CPU Drivers
in the baseline configuration. This behavior is similar to that of the normal
version of Barrelfish.

The second and third CPU Driver-HT setups use 4 CPU Drivers each, with
the notable difference that the former halts half the available HTs (resulting in
1 HT per CPU Driver), while the latter keeps all of the HTs awake (2 HTs per
CPU Driver).

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 65

The workloads that we employed are based on the Fhourstones bench-
mark, which we detailed in Section 4.2 and utilized when conducting the HT-
throughput-related experiments presented in Chapter 4.

Figure 6.3 depicts the data derived from our experiments. The plot on the
top (i.e., Figure 6.3a) used 8 single-threaded Fhourstones domains running in
parallel, while the one at the bottom (i.e., Figure 6.3b) used only 4 Fhourstones
domains.

These domains were uniformly distributed across CPU Drivers: this means
that the domains did not migrate between CPU Drivers, but could do so inside
the group of HTs managed by the same kernel. Because of this migration
between HTs, we decided to use the CPU Driver’s time information (maintained
by the BSHT) in order to have a consistent view of time on all HTs sharing a
CPU Driver. There is, however, a downside to this decision: the step with
which the time information is updated can be as high as the time slice (in our
case, 80 ms). Thankfully, the duration of the executed experiments was much
larger (> 2.5 minutes), resulting in the effects of the degraded resolution being
negligible.

Since the Fhourstones workloads were composed of domains which executed
independently, we used warm-up and cool-down phases for the experiments, in
order to maintain a constant system load during the measurement period of
each domain. Also, each experiment was repeated 10 times.

Looking at the times measured when the 8 Fhourstones workload was used
(i.e., Figure 6.3a), we see that it makes little difference if each HT has its own
CPU Driver or if there is only 1 CPU Driver per physical core (i.e., 2 tightly
coupled HTs). However, the same amount of work took a longer time when 4
CPU Drivers were used and half of the HTs were put to sleep. The observations
are consistent with what we saw before: a single HT per physical core can
deliver a higher throughput than each of the 2 HTs sharing a core, but the total
throughput accomplished by the pair is even greater.

Moving on to the 4 Fhourstones workload (i.e., Figure 6.3b), we see that,
again, the first and third configurations performed similarly. However, the sec-
ond setup, in which a single HT per core was used, emerged as the best in the
present situation: since the entire benchmark contained 4 independent threads
(1 for each Fhourstones domain), the best utilization of the hardware resources
was achieved when half of the HTs relinquished their share in order to increase
the throughput of the remaining 4 HTs. Simply putting it, there was not enough
parallelism in the workload for justifying the usage of more than 4 HTs.

Costs Associated with Parking and Resuming HTs

Based on what was discussed so far in the current Section, the main conclusion
of the experiments depicted in Figure 6.3 is that the throughput of the system
can be improved by tailoring the number of active HTs to a particular situation.
In order for this adaptation procedure to be of practical relevance, it must have
a very small overhead.

The normal version of Barrelfish, which uses single-HT CPU Drivers, is able

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 66

8 CPU Drivers 4 CPU Drivers, 4/8 HTs halted 4 CPU Drivers, all HTs up
experiment

0

50

100

150

200

250

300

350
ru

n
tim

e
(s

)
APIC ID

0
1
2
3
4
5
6
7

(a) 8 Fhourstones workload.

8 CPU Drivers 4 CPU Drivers, 4/8 HTs halted 4 CPU Drivers, all HTs up
experiment

0

50

100

150

200

250

300

ru
n

tim
e

(s
)

APIC ID
0
1
2
3
4
5
6
7

(b) 4 Fhourstones workload.

Figure 6.3: Performance comparison between vacherin running Barrelfish with
single-HT CPU Drivers and vacherin managed by multi-HT CPU Drivers. The
experiment which utilized 8 CPU Drivers used the single-HT variant, while the
other 2 experiments employed the multi-HT version. A black outline is used to
group HTs that were sharing the same CPU Driver and different shades of the
same color (i.e., dark vs light) are assigned to HTs sharing the same physical
CPU core. The run time and 95% confidence intervals are depicted for each
CPU Driver. The CIs are very tight relative to the execution time, which lead
to them begin reduced to dots.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 67

to achieve the said effect by migrating KCBs (i.e., kernel control blocks) between
CPU Drivers, as presented in [14]: before an HT is halted, its KCB is transfered
to another HT, which alternates between the 2 kernel states. Notable operations
of this process and their associated costs are the following (the measurements
were taken on the same vacherin machine, identified as ”1×4 Haswell” in Table 2
of [14]; Hyper-Threading Technology was disabled):

• sending an IPI to the core to be halted, the propagation of the IPI and
executing the IPI handler on the receiving HT → 3,000 cycles;

• preparing a kernel on the HT meant to send the wake-up signal, up to the
point when the IPI is sent to the sleeping HT → 26,000,000 cycles;

• initializing the CPU Driver on the woken-up HT → 2,000,000 cycles.

In order to simplify the comparison with the multi-HT CPU Driver Barrelfish
variant, we will consider:

• the cost of halting an HT, equivalent to the first of the previously men-
tioned 3 operations → 3,000 cycles;

• the cost of resuming an HT, consisting of the last 2 operations →
26,000,000 + 2,000,000 = 28,000,000 cycles.

For the multi-HT CPU Driver, we will use the data acquired by running
experiments using the Normal Measurement Setup, as these results have been
reported in Subsection 4.1.1.:

• putting an HT to sleep implies that the HT in question does not own
(i.e., have exclusive access to the state of) a dispatcher, so we consider
the cost associated with parking an HT to be 0.: we ignore the duration
of evicting a dispatcher from the HT (i.e., save its state in the dispatcher
control block).

Also, note that HTs determine they should sleep on their own or (in case
the BSHT wants to park an APHT) sending the sleep signal is as simple
as changing the value of a variable (i.e., raising the flag mentioned in
Section 6.4);

• the cost of resuming an HT is comprised of sending the wake-up signal +
the wake-up duration;

Table 6.1 summarizes the costs of parking and resuming HTs: it is easy to
observe that the options available when using multi-HT CPU Drivers are better
in terms of overhead.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 68

Table 6.1: The cost (in cycles) of parking and resuming HTs, depending on the
mechanism employed for carrying out these operations.“Move KCB” refers to
the setup presented in [14], while the columns under “Multi-HT CPU Driver”
refer to using the mentioned synchronization operations, as they are presented
in Section 2.4.

Operation
Mechanism

Move KCB
Multi-HT CPU Driver
monitor/mwait hlt

park HT 3,000 0 0
resume HT 28× 106 1,160 2,140

Halted vs Not Started HT

In Section 4.2 we have made the empirical observation that there is no difference
related to the processing power of an HT between the situation of disabling
Hyper-Threading and the case of parking all but 1 HT on each physical core.

Knowing this, it is highly probable that, on a 2-way SMT processor (such
as our vacherin machine), the performance of an HT is not affected differently
when its sibling HT is either halted or not started at all.

To assert this hypothesis, we compared the run times of both the 4 and 8
Fhourstones workloads, when using 4 CPU Drivers and half the HTs (one on
each core) were either halted or not started.

The outcome of these experiments is presented in Figure 6.4 and is in line
with our assumption.

Conclusions of Benchmarking

As a conclusion to the observations presented in this Section, we think that the
main benefit exhibited by the multi-HT CPU Driver is the added flexibility of
managing hardware threads, with very little overhead. We would also like to
point out the ability of Barrelfish using multi-HT CPU Drivers to be on par in
terms of performance with the single-HT CPU Driver version, and even surpass
it by adapting to the characteristics of the employed workload.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 69

4 fhs., 4/8 HTs halted 4 fhs., 4/8 HTs not started 8 fhs., 4/8 HTs halted 8 fhs., 4/8 HTs not started
experiment

0

50

100

150

200

250

300

350

ru
n

tim
e

(s
)

APIC ID
0
1
2
3
4
5
6
7

Figure 6.4: Comparison between the performance impact of halting an HT
vs not starting it. The first 2 experiments employed a workload consisting of
4 parallel Fhourstones benchmark runs (i.e., 1 on each HT), while the last 2
doubled the workload (i.e., 2 Fhourstones on each HT). The representations are
similar to those in Figure 6.3 and the conclusion is (as expected from previous
observations) that halting an HT is the same as not starting it.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 70

6.7 Optimizing the Scheduler

Based on the benchmarking-related discussion in Section 6.6, the low-overhead
mechanisms available in the multi-HT CPU Driver which can be used to vary
the number of awake HTs and, implicitly, which can influence hardware resource
allocation, have the potential of improving Barrelfish’s user task throughput.

It is, thus, important to detect the right moment for parking or resuming an
HT. For this reason, we propose a scheduler optimization, meant to detect the
characteristics of the executing workload and adapt the state of HTs accordingly.

Before we dive into the actual optimization, we would like to point out that,
while the multi-HT CPU Driver implementation supports any number of HTs
per CPU Driver, this optimization is aimed at 2-way SMT processors. Also, we
focus on improving the throughput of a group of batch tasks.

For each domain, we define the utilization (u, for short) as the ratio between
the used budget and the allocated budget, which, in the context of the RBED
scheduler [3] and for domain d, becomes:

ud =
used budget

allocated buged
=

execution time

worst case execution time

The decision of changing the state of an HT is made independently by each
CPU Driver’s scheduler as following:

• In the case 1 HT is active, the sibling HT is woken-up if:

min
(∑

ud, 1
)
< min

 ∑
ud≤66%

ud

+ 0.66× |{d|ud > 0.66}| , 1.33

The numbers in the above equation are based on our findings presented in
Section 4.2: if the maximum throughput of a single HT per physical core
is normed to 1, then the maximum throughput of each HT (of a 2-way
SMT core, both being active) is ≈ 0.66 (in total ≈ 1.33). This means that
when 1 HT is active per core, the maximum achievable throughput is 1,
while both can deliver up to 1.33. Naturally, utilizations exceeding 0.66
are capped at this value, since this is the upper limit of the throughput
when both HTs are active.

• In the case both HTs are active, one of them is parked if (note that the
execution times for computing the utilizations are the ones measured on
the HT in question of being parked):∑

ud < 0.5

The idea behind this mathematical inequality is that, if an HT is not
utilizing at least half of it processing power, then it should lend all its
resources to the other HT. Doing so increases the throughput of the active
HT with half of what it had when both HTs were awake.

CHAPTER 6. USER DOMAINS ON TOP OF A MULTI-HT CPU DRIVER 71

While this idea of optimizing the scheduler is intuitively sound, it still needs
further refinement. For example, an important aspect is related to the way these
changes will influence RBED’s invariants: best effort tasks can probably cope
pretty easily with the modifications, but this may not be the case with soft and
hard real-time tasks.

Also, there is the question of how will the proposed mechanism tasked with
managing hardware threads interact with parallel programs: an OpenMP-based
program can spawn a variable number of worker threads, but how does the op-
timal number of said workers depend on the processing power of the underlying
HTs?

Unfortunately, there was not enough time during this Thesis in order to
further tackle the challenge of optimizing HT management. Thus, this might
be a good candidate for future improvements to the multi-HT CPU Driver.

Chapter 7

Conclusions and Future
Work

Conclusions

In the final paragraphs of this Thesis, we would like to take a step back and give
a clear overview of what we wanted to achieve and what are the contributions
generated by our work.

We started off from the idea that SMT lanes should not be treated in the
same way as normal CPU cores, since they share much more hardware resources
(e.g, execution units and caches) when compared to different cores (which are
more independent). This idea was based on the previous work carried out by Xi
Yang et al. regarding the Elfen Scheduler [13], which we wanted to reproduce
and extend in the context of the Barrelfish Operating System.

The initial plan focused on experimenting with a number of models which
the OS could use to manage HTs, most of these models being aimed at providing
fast context switching (between user and kernel spaces, or from one user domain
to another). Thus, the first step that we took was to determine the cost of
synchronizing HTs, which we found to be at least 1250 cycles on an Intel Haswell
CPU, with 2-way SMT via Hyper-Threading Technology. This value represents
the time it takes a sleeping HT to resume execution and is on par with what the
Elfen Scheduler paper [13] states. However, because the duration of performing
a virtual address space switch (683 cycles, with TLB tagging) was about half of
the HT’s wake-up duration, we decided, for practical reasons, that most of our
initially proposed models do not make sense.

Moving forward, we considered worth pursuing the idea of having multiple
HTs sharing the same single-lock guarded CPU Driver, with each SMT lane in-
dependently dispatching user-space tasks. Thus, we made the necessary changes
to the CPU Driver and modified the kernel’s scheduling and dispatcher man-
agement logic. The result was a CPU Driver which could accommodate a group
of HTs, let each of these HTs execute user-tasks in parallel and reconcile them
at need (for example, when LMP messages could not be delivered because the

72

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 73

receiver domain was executing in parallel with the sender).
We measured the impact of our changes by running a series of experiments

and comparing the performance against that of Barrelfish powered by the single-
HT version of the CPU Driver. In the end, the main advantage of the multi-HT
CPU Driver turned out to be its ability to vary the number of active HTs, with
very little overhead when compared to the previously available mechanisms.

Future Work

As can be observed from the path that we took during this Thesis, our primary
objective was to explore the uncharted territory of using the same CPU Driver
to manage multiple HTs. This means that we focused more on weighting the
trade-offs between different ideas and were able to allocate less time to refining
a specific one.

In the future, we hope that our proposed model will be expanded upon
and that certain aspects of it will be optimized. Improving the scheduler and
adapting it to better leverage the new context is an interesting and vast topic
which includes: determining the best allocation of user tasks to each HT, ex-
ploring the possibilities generated by multi-HT enabled dispatchers, detecting
which HT configuration is best for a given scenario. Related to this topic, a
more focused subject is the refinement of our half-backed optimization proposal
for the RBED Scheduler, by adapting the said algorithm in order to preserve
(part of) the invariants. Also, the cooperation between the CPU Driver’s HT
management logic and parallel user tasks can be beneficial for the throughput
of the system, by giving both pieces of logic a consistent view of the available
HT characteristics and configurations.

An important and intensively used Barrelfish mechanism, which is in need
of fundamental modifications, is LMP. Assumptions that were valid in a single-
HT CPU Driver are no longer true when the CPU Driver manages multiple
HTs. The changes that we had to make in order to ensure that messages can
be successfully transfered between domains (executing on top of the same CPU
Driver) have a negative impact on performance. A more fundamental redesign of
the message passing logic, by allowing, for example, data transfers to be carried
out to a running domain, has the potential of greatly improving our work.

Overall, we feel that this Thesis and the associated implementation help
pave the way to further Operating System Research.

Bibliography

[1] Team Barrelfish. Barrelfish Architecture Overview. Version 2.0. http://
www.barrelfish.org/publications/TN-000-Overview.pdf. 2013.

[2] Andrew Baumann. Inter-dispatcher communication in Barrelfish. 2011.
url: http://www.barrelfish.org/publications/TN-011-IDC.pdf.

[3] Scott A Brandt et al. “Dynamic integrated scheduling of hard real-time,
soft real-time, and non-real-time processes”. In: Real-Time Systems Sym-
posium, 2003. RTSS 2003. 24th IEEE. IEEE. 2003, pp. 396–407.

[4] Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Sec-
tion 2.6 Intel R© Hyper-Threading Technology. 2016.

[5] Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Sec-
tion 8.4 Thread Synchronization. 2016.

[6] Intel R© 64 and IA-32 Architectures Software Developers Manual. Section
17.15.1 Invariant TSC. 2016.

[7] Sean Peters et al. “For a microkernel, a big lock is fine”. In: Proceedings
of the 6th Asia-Pacific Workshop on Systems. ACM. 2015, p. 3.

[8] Phoronix Test Suite - Linux Testing and Benchmarking Platform, Au-
tomated Testing, Open-Source Benchmarking. url: http://phoronix-
test-suite.com/.

[9] Simultaneous multithreading. url: https://en.wikipedia.org/wiki/
Simultaneous_multithreading.

[10] Livio Soares and Michael Stumm. “FlexSC: Flexible system call schedul-
ing with exception-less system calls”. In: Proceedings of the 9th USENIX
conference on Operating systems design and implementation. USENIX As-
sociation. 2010, pp. 33–46.

[11] The Barrelfish Operating System. url: http://www.barrelfish.org.

[12] The Fhourstones Benchmark. url: http : / / tromp . github . io / c4 /

fhour.html.

[13] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. “Elfen schedul-
ing: fine-grain principled borrowing from latency-critical workloads using
simultaneous multithreading”. In: 2016 USENIX Annual Technical Con-
ference (USENIX ATC 16). USENIX Association. 2016, pp. 309–322.

74

http://www.barrelfish.org/publications/TN-000-Overview.pdf
http://www.barrelfish.org/publications/TN-000-Overview.pdf
http://www.barrelfish.org/publications/TN-011-IDC.pdf
http://phoronix-test-suite.com/
http://phoronix-test-suite.com/
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
http://www.barrelfish.org
http://tromp.github.io/c4/fhour.html
http://tromp.github.io/c4/fhour.html

BIBLIOGRAPHY 75

[14] Gerd Zellweger et al. “Decoupling Cores, Kernels, and Operating Sys-
tems.” In: OSDI. Vol. 14. 2014, pp. 17–31.

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

EXPLICIT OS SUPPORT FOR HARDWARE THREADS

 POENARU ANDREI

 Zürich, 22.03.2017

	Introduction
	Motivation
	Thesis Structure

	Background
	Simultaneous Multithreading
	Intel® Hyper-Threading Technology
	The Barrelfish OS
	Synchronizing Hardware Threads

	Related Work
	Elfen Scheduling
	Asynchronous System Calls
	Exclusive Access to a Microkernel

	Interaction between Hardware Threads
	Synchronization
	Normal Measurement Setup
	Reduced Measurement Setup
	Cost of HT Synchronization

	The Fhourstones Benchmark
	Context Switching
	Hardware Details
	Conclusions on Hardware Threads Interaction

	Multi-HT CPU Driver
	Sharing a Kernel
	The Kernel Stacks
	The BIG-Kernel Lock
	The CPU Driver's Boot Entry Point
	The CPU Driver's Syscall Entry Point
	The CPU Driver's Interrupts and Exceptions Entry Point
	Booting an Application Hardware Thread
	The Hardware Thread Control Block
	Using a Multi-HT CPU Driver

	User Domains on Top of a Multi-HT CPU Driver
	Scheduler
	Domains, Dispatchers and Hardware Threads
	Core Local RPC and Message Passing
	HT Management
	FPU Registers
	Benchmark
	Optimizing the Scheduler

	Conclusions and Future Work

