ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Systems @ ETH ziricy

Bachelor’s Thesis Nr. 52b

Systems Group, Department of Computer Science, ETH Zurich

Multicore ARMv7-a support for Barrelfish

by
Samuel Hitz

Supervised by
Prof. Timothy Roscoe, Adrian Schuepbach

March 2012 — August 2012

Informatik
Computer Science

inf

Abstract

Commodity computer systems contain more and more specialized hardware tai-
lored to perform certain tasks with optimal efficiency and power consumption.
Due to its relatively simple RISC (Reduced Instruction Set Computer) based
instruction set, which allows for cheap and highly optimised hardware with low
power consumption, ARM based chips have become increasingly popular.

This thesis describes the port of Barrelfish, a research operating system de-
veloped at ETH Zurich, to a multi-core ARMv7-a architecture simulated by
Gemb. Barrelfish’s multikernel architecture inherently supports heterogeneous
processor systems and with Gemb we target a very interesting hardware simula-
tor. It allows us to simulate a wide range of system configurations, from simple
single-core one-cycle-per-instruction CPU system without caches, to a possibly
heterogeneous, multi-core, pipelined, out-of-order CPU system with arbitrarily
deep levels of caches.

We managed to bring up Barrelfish on Gem5 supporting up to four cores
interacting with each other. The evaluation of our port shows, at least qualita-
tively, that it performs comparably to the x86-64 port of Barrelfish running on
Gemb.

Contents

1 Introduction and Motivation 3
2 Related Work 3
3 Background 4
3.1 Barrelfish 4
3.1.1 The multikernel model 4
3.1.2 Message Passing Interface 4
3.1.3 Process structure oo L 5
3.1.4 Memory management 5
3.1.5 System knowledge base 5

3.2 Gemd e 5
3.21 CPUmodels 5
3.2.2 Executionmodes L oL 6
3.2.3 Python integration oo 6

3.3 ARM. e 6
3.3.1 Registers and register banking 7
332 CPUmodes e 7
3.3.3 MMU and page table layout 8
3.3.4 Exception handling 8
3.3.5 Generic Interrupt Controller 8
3.3.6 COprocessorso 9

4 Design and Implementation 9
4.1 Single-core implementation 0L 9
4.1.1 High-level boot up process overview 10
4.1.2 Memory Layout. L. 10
4.1.3 MMUSetup. . . .« . o v vt i 11
4.1.4 Context Switch oL 12
4.1.5 Exception Handling 12
4.1.6 Devices 13
4.1.7 Ramdisk. 15
4.1.8 Setting up user space 15
4.1.9 Problems encountered with Gem5 and the ARM GCC . . 16

4.2 From single-core to multi-core L 17
4.2.1 Writing a second stage boot loader 17
4.2.2 Multi-core boot up overview 18
4.2.3 Memory Layout o0 20
4.2.4 Exception Handling 20
4.2.5 Interrupt Controller 20
4.2.6 Snoop Control Unit 21
4.2.7 Setting up user space on bootstrap processor 22
4.2.8 Starting an additional core 22
4.2.9 Setting up user space on application processor 23
4.2.10 Inter-core communication 23
4.2.11 About caches 24
4.2.12 Mutual Exclusion 24

Evaluation

5.1 Test systems

52 Tests

5.3 Benchmarks
5.3.1 Memory usage . .
5.3.2 UMP benchmarks

Conclusions

Future Work

25
25
26
27
28
29

32

33

1 Introduction and Motivation

With today’s trend towards highly specialized, low power consuming systems,
ARM based chips have become increasingly popular. Its relatively simple RISC
(Reduced Instruction Set Computer) based instruction set allows for cheap and
highly optimised hardware with low power consumption [15]. The extensive use
of ARM-based platforms in the embedded space has led to a wide variety of
different configurations. The use of heterogeneous and performance asymmetric
processor cores, such as the recently announced ARM big. LITTLE architecture
[10], makes it an attractive target for Barrelfish. In particular, it provides a good
environment to evaluate the multikernel’s inherent support for heterogeneous
processor systems.

With Gemb we target a very interesting hardware simulator. It allows us
to simulate a wide range of system configurations, from simple single-core one-
cycle-per-instruction CPU system without caches, to a, possibly heterogeneous
multi-core, pipelined, out-of-order CPU system with arbitrarily deep levels of
caches.

This thesis describes the port of Barrelfish to a multi-core ARMv7-a archi-
tecture and will serve as a basis for further research into low-power OS design
and support for heterogeneous many-core systems. Our approach is to first
port the existing single-core ARMv5 Barrelfish port to the ARMv7-a architec-
ture and in a further step, add support for multiple cores to it. In our attempt
of doing so we try to answer, among others, the following questions:

e What needs to be changed to bring up the current Barrelfish ARMv5 port
on a ARMvT7-a platform?

e How can we extend this basis to support multiple cores?
e What changes do we need to make to inter-core message passing drivers?

e How does our system perform compared to the existing x86-64 port on
Gemb?

Section 2 gives an overview of related work in this area. Section 3 gives
some background information about Barrelfish, the ARMv7-a architecture and
Gemb, the architecture simulation environment used in this thesis. In section
4 we go into the design decisions and implementation of the port. Evaluation
results are presented in section 5 and the last two sections include conclusions
and an outlook on possible future work.

2 Related Work

It is hard to find related work, given the nature of the topic. Nevertheless we
will list some related papers and ARM ports here.

Bram Scheidegger describes in Barrelfish on Netronome [21] the port of
Barrelfish to the ARMv5 Intel XScale based Netronome network card. He got
the CPU driver working and describes the port from a little endian to a big
endian system as being tricky.

In Booting ARM Linux SMP on MPCore [5], Charly Bechara describes the
boot up process of Linux on multiple ARM cores, which helped us in under-
standing how to boot an additional core on an ARM platform.

With the increasing importance of the ARM architecture in consumer elec-
tronics, mainly phones, tablets and embedded devices, there have been many
ports of existing operating systems to ARM. These include Linux (e.g. Arch
Linux [2]), FreeBSD [19], the L4 microkernel [13] and with the recent announce-
ment of Windows RT, even Microsoft Windows [23].

3 Background
3.1 Barrelfish

Barrelfish is a research operating system developed at ETH Zurich in collabo-
ration with Microsoft Research [3]. It distinguishes itself from ’traditional’ op-
erating systems like Linux or Windows through various design principals which
we describe in this section. Most of the following information about Barrelfish is
from The multikernel: a new OS architecture for scalable multicore systems [3].

3.1.1 The multikernel model

The multikernel model is an OS architecture for heterogeneous multicore ma-
chines [3]. It is guided by three design principles:

1. Make all inter-core communication explicit.
2. Make OS structure hardware neutral.
3. View state as replicated instead of shared.

To achieve these principles, Barrelfish employs multiple independent OS in-
stances, which communicate via explicit message passing [4]. Each instance
consists of a privileged-mode CPU driver and a user-mode monitor process.
The CPU driver is architecture specific and handles interrupts, enforces mem-
ory protection via MMU and timeslices processes. Monitors handle inter-core
communication, coordinate system-wide state and encapsulate much of the func-
tionality found in the kernel of a traditional OS. Since the monitor runs in
user-space and all the hardware specific functionality are handled by CPU- and
device drivers, it is (mostly) hardware independent.

3.1.2 Message Passing Interface

Barrelfish does not rely on shared memory and cache coherence mechanisms, but
uses message passing for inter-core communication. Depending on the hardware
platform, this can be implemented using shared memory and cache coherence,
but could also use other mechanisms available. Barrelfish distinguishes between
two types of messages, intra-core messages, which are handled by the CPU
driver’s lightweight inter-process communication interface and inter-core mes-
sages, which take place in the user-space and are handled by the monitor using
a variant of user-level RPC (URPC) [6].

3.1.3 Process structure

Processes in Barrelfish have a different structure than a typical monolithic OS,
due to its multikernel model. A process is represented by a collection of dis-
patcher objects. Each core on which the process might execute has one dis-
patcher object for a given process. Dispatchers on a core are scheduled by
the corresponding CPU driver [18]. Each dispatcher has a core-local user-level
thread scheduler, so threads are not supported by kernel threads.

3.1.4 Memory management

Barrelfish uses a capability system for memory management [12]. All memory
management is performed by manipulating capabilities through system calls.
Capabilities itself are user-level references to kernel objects and regions of phys-
ical memory. Virtual memory management is completely done in user-level code
except the things that need privileged rights, such as actual page table manip-
ulation, which are done by the CPU driver. Since physical memory is a global
resource, capabilities management has to be coordinated between cores.

3.1.5 System knowledge base

As a multikernel OS, and as such predestined for heterogeneous hardware, Bar-
relfish needs to choose appropriate system mechanisms. The system knowledge
base [22] maintains knowledge of the underlying hardware. It is populated with
information gathered through hardware discovery, latency measurements from
IPC and some hard-coded facts that can not be discovered or measured. This
information can be used e.g. for managing core diversity, by scheduling tasks
to cores with specific features which benefits the execution of this application.

3.2 Gemb

The Gemb5 [7] simulator combines the best aspects of the M5 [8] and GEMS
[16] simulators. With its flexible and highly modular design, Gemb allows the
simulation of a wide range of systems. Gemb supports a wide range of ISAs like
x86, SPARC, Alpha and, in our case most importantly, ARM. In the following
we will list some features of Gemb5.

3.2.1 CPU models

Gemb supports four different CPU models: AtomicSimple, TimingSimple, In-
Order and O3.

The first two are simple one-cycle-per-instruction CPU models. The dif-
ference between the two lies in the way they handle memory accesses. The
AtomicSimple model completes all memory accesses immediately, whereas the
TimingSimple CPU models the timing of memory accesses. Due to their sim-
plicity, the simulation speed is far above the other two models.

The InOrder CPU models an in-order pipeline and focuses on timing and
simulation accuracy. The pipeline can be configured to model different numbers
of stages and hardware threads.

The O3 CPU models a pipelined, out-of-order and possibly superscalar
CPU model. It simulates dependencies between instructions, memory accesses,

pipeline stages and functional units. With a load/store queue and reorder buffer
its possible to simulate superscalar architectures as well as multiple hardware
threads.

3.2.2 Execution modes

Gemb5 provides two different execution modes: system-call emulation (SE) and
full-system (FS).

In system-call emulation Gemb emulates most system calls by just passing
it to the host operating system. It is not possible to run privileged code in SE
mode.

In contrast the full-system emulation mode simulates a complete system
suitable for running an OS. Therefore interrupts, exceptions, privileged levels
and some devices like UART, interrupt controllers, timers and network interfaces
are supported.

3.2.3 Python integration

The Gemb simulator provides a tight integration of Python into the simulator.
Python is mainly used for system configuration. Every simulated building block
of a system is implemented in C++ but are also reflected as a Python class and
derive from a single superclass SimObject. This provides a very flexible way of
system construction and allows to tailor nearly every aspect of the system to
our needs.

Python is also used to control the simulation, taking and restoring snapshots
as well as all the command line processing.

3.3 ARM

ARM is a 32-bit reduced instruction set computer (RISC) instruction set archi-
tecture (ISA). The following are the key characteristics of the architecture [15]:

1. a large uniform register file

2. aload/store architecture, meaning data-processing is only possible on reg-
ister contents not memory content

3. simple addressing modes

4. instructions that combine a shift with an arithmetic or logical operation
(barrel shifter)

5. auto-increment/-decrement addressing modes
6. load/store multiple data instructions to maximize data throughput
7. conditional execution of instructions to maximize execution throughput

Its important to note that ARM is not a processor but only a CPU core design
and instruction set architecture, which can be licensed by manufacturer to create
their own ARM based chips. The current version of the architecture is ARMv7
and it distinguishes three profiles:

e Application profile: ARMv7-a and Cortex-A series

e Real-time profile: ARMv7-r and Cortex-R series
e Microcontroller profile: ARMv7-m and Cortex-M series

Since we are porting a general purpose operating system, we will focus on the
application profile ARMv7-a, although many concepts are found in any of the
three profiles.

3.3.1 Registers and register banking

The ARM architecture provides 16 core registers, r0-r12, the stack pointer (SP),
the link register (LR) and the program counter (PC). These registers are selected
from a larger set of registers, that includes banked copies of some registers, with
the current register selected by the execution mode. Additionally there is a
current program status register (CPSR) and in some modes a saved program
status register (SPSR). These hold information about the current CPU mode,
flags set by the ALU, masked interrupts etc. [15]

3.3.2 CPU modes

The ARM architecture defines several CPU modes. The processor can only be
in one mode at a time. [15]

User mode User mode is the only unprivileged mode. An operating sys-
tem typically runs application in user mode to protect system resources from
unprivileged access.

System mode Software executing in System mode is privileged. System
mode has the same registers available as User mode and is not entered by any
exception.

Supervisor mode The supervisor mode is entered after a software interrupt
occurred. SP and LR registers are banked.

Abort mode Abort mode is the default mode to which a Data Abort excep-
tion or Prefetch Abort exception is taken. SP and LR registers are banked.

Undefined mode Undefined mode is the default mode to which an instruction-
related exception, including any attempt to execute an undefined instruction, is
taken. SP and LR registers are banked.

IRQ mode IRQ mode is the default mode to which an IRQ interrupt is taken.
TIRQ interrupts are typically interrupts from ’slow’ devices. SP and LR registers
are banked.

FIQ mode FIQ mode is the default mode to which an FIQ interrupt is taken.
FIQ interrupts are typically interrupts from fast, low latency devices, therefore
r8-r12 are additionally banked, used for passing arguments to the interrupt
handler without the need of stack manipulations.

3.3.3 MMU and page table layout

The ARMv7-a architecture includes a memory management unit (MMU) which
translates virtual to physical addresses. There is also an associated translation
lookaside buffer (TLB), which caches frequently used page table entries to speed
up address translation. ARM uses 32-bit addresses, so the address space consists
of 232 bytes (4GB). The whole address space is divided into sections and pages
and a two level page table is used for address translation.

L1 page table The L1 page table divides the 4GB address space into sections
of 1IMB each. There are two types of L1 page table entries, either it maps the
whole section directly or it is a pointer to a L2 page table, which allows a finer
grained control over memory. A L1 page table entry has a size of 4 bytes and
since there are 4096 sections the L1 page table consumes 16KB of memory.

L2 page table A L2 page table divides the 1MB section further into either
large pages of 64KB or small pages of 4KB size each. There are also tiny pages
of 1KB size, but those are deprecated in ARMv7. Each L2 page table entry
is 4 bytes and contains beside the page base address also memory access bits
and other information, such as whether data of this page should be cached or
executed. There are 256 L2 page table entries per table, thus a L2 page table
consumes 1KB of memory.

3.3.4 Exception handling

Like the x86 architecture, ARM uses an exception vector at a fixed location as
an entry point for exception handling. Unlike the exception vector in x86, which
contains the address to the appropriate exception handler, the ARM exception
vector contains the actual jump instruction. Each possible exception has a fixed
offset in the exception vector and when the CPU enters an exceptional state
it executes the instruction at EX_ VECTOR_BASE + EX_OFFSET. The exception
vector is located at address 0x00000000 by default, but can be relocated to
address 0xffff0000.

3.3.5 Generic Interrupt Controller

The ARM GIC architecture splits logically in two parts: the distributor and
one or more CPU interfaces. The distributor performs interrupt prioritization
and distribution to the CPU interfaces that connect to the processors in the
system [14]. It provides a programming interface for:

e globally enabling forwarding of interrupts to the CPU interfaces
e enabling/disabling each interrupt

e setting priority and target processors of each interrupt

e sending a software generated interrupt to one or more processors
e getting the state of each interrupt

e set/clear the pending state for a peripheral interrupt

A CPU interface provides the interface for a processor that operates with the
GIC. Each CPU interface provides a programming interface for:

e enabling the signalling of interrupt requests by the CPU interface
e acknowledging an interrupt

e indicating completion of the processing of an interrupt

e setting priority mask for the processor

e defining preemption policy for the processor

e determining pending interrupt with the highest priority

When an interrupt gets forwarded to the CPU interface by the distributor, it
determines whether the interrupt has sufficient priority to be signaled to the
processor, by using the interrupt priority mask and preemption settings of the
CPU interface.

Interrupts from sources are identified by ID numbers. Each CPU interface
can see up to 1020 interrupts. Interrupt numbers IDO - ID31 are private to
a CPU interface and therefore banked at the distributor. ID numbers ID32 -
ID1019 can be assigned to peripheral interrupts and are global.

3.3.6 Coprocessors

The ARM architecture supports sixteen coprocessors, usually referred as CP0O
to CP15. Coprocessors 8 to 15 are currently used or reserverd for future use by
the architecture. Coprocessors 0 to 7 can be used by vendors to provide vendor-
specific features. CP15 is the most important and provides system control
functionality.

4 Design and Implementation

In this section we will describe the design and implementation of the Barrelfish
ARMv7-a port. First we will show what it takes to bring Barrelfish up on a
single-core ARMv7-a architecture, simulated by Gem5. In a second step, we
will enhance our design to boot multiple CPUs and focus on the changes which
had to be made to the single-core implementation.

Since there was already an existing ARMvb5 port of Barrelfish for QEMU and
the Intel XScale architecture, we could build our work upon those achievements.
However, since the ARMv7-a architecture differs significantly from the ARMv5
and Gemb was a new simulating environment with its own quirks and flaws,
lots of changes had to be made. We could still profit from the overall boot up
structure given by those ports.

4.1 Single-core implementation

Our first goal was to rewrite the existing ARMv5 port of Barrelfish for QEMU
to support the ARMv7-a architecture. By rewriting this existing port we could
focus on the architecture specific parts, since the overall boot up structure was
already given. Another reason to first target just a single core was that several

things are greatly simplified compared to a system with multiple processors.
These include, among others:

e No explicit inter-core communication
e No other core interfering with physical memory
e The boot up protocol is greatly simplified

e Critical system resources can be protected by disabling interrupts

4.1.1 High-level boot up process overview

This section gives a high-level overview of the boot up process of the Barrelfish
kernel on ARMv7-a. In subsequent sections we will go more into details involved
in the single steps.

Setup kernel stack and ensure privileged mode

Allocate L1 page table for kernel

Create necessary mappings for address translation

Set translation table base register (TTBR) and domain permissions
Activate MMU, relocate program counter and stack pointer

Invalidate TLB, setup arguments for first C-function arch_init

Setup exception handling

Map the available physical memory in the kernel L1 page table

© XN WD

Parse command line and set corresponding variables

}_.
e

Initialize devices

—_
—_

Create a physical memory map for the available memory

—_
[\

. Check ramdisk for errors

—
w

. Initialize and switch to init’s address space

—_
>~

. Load init image from ramdisk into memory

—_
ot

. Load and create capabilities for modules defined by menu.lst

—
(=2}

. Start timer for scheduling

—
~

Schedule init and switch to user space

—
oo

. init brings up the monitor and mem_serv

—
©

. monitor spawns ramfsd, skb and all the other modules

4.1.2 Memory Layout

Like many other popular operating systems, Barrelfish employs a memory split.
The idea behind a memory split is to separate kernel code from user space code
in the virtual address space. This allows the kernel to be mapped in every
virtual address space of each user space program, which is necessary to allow
user space code to access kernel features through the system call interface. If the
kernel was not mapped into the virtual address space of each program, it would
be impossible to jump to kernel code without switching the virtual address

10

space. Additionally ARMv7-a provides two translation table base registers,
TTBRO and TTBR1. We can configure the system to use TTBRO for address
translations of virtual addresses below 2GB and TTBR1 for virtual address
above 2GB. This saves us the explicit mapping of the kernel pages into every
L1 page table of each process.

Even though the kernel is mapped to each virtual address space, it is invisible
for the user space program. Accessing memory, which belongs to the kernel,
leads to a pagefault. Since many mappings can point to the same physical
memory, memory usage is not increased by this technique.

Physical Memory Virtual Memory

0x00000000 0:
Kernel Stack

0x00011000

Kernel ELF file

User space
Kernel Page Table application

0x000F0000

Vector

[}
0x81000000

Free memory
Ramdisk

0x10000000

0xC

— Kernel Stack

0xC0011000

Kernel ELF file

Kernel Page Table

Free memory

0xFE000000

Memory mapped devices

OXFFFF0000
Vector
Ox1FFFFFFFF OxXFFFFFFFF

<4——: Memory mapping

Figure 1: Barrelfish memory layout

Figure 1 shows the memory layout of the single-core ARMv7-a port of Bar-
relfish. We have a memory split at 2GB, where everything upwards is only
accessible in privileged mode and the lower 2GB of memory is accessible for
user space programs. The position of the kernel in the virtual space is hard-
coded. The L1 page table of the kernel address space is located right after the
kernel and aligned to 16KB. We map the whole available physical memory into
the kernel’s virtual address space. The locations for the 64KB kernel stack,
the ramdisk aswell as the section for memory mapped devices are hardcoded.
Overall the memory layout is very static and turned out to be problematic with
regard to multicore support, which will be explained in section 4.2.

4.1.3 MMU Setup

In order to turn on the MMU, we first need to set up the L1 page table and
map the kernel section to the corresponding section in physical memory. We
also map the section containing the high memory relocated exception vector to
the kernel section. We use that when we later set up exception handling. After
the MMU is turned on, we need to relocate the instruction pointer to point to
the next instruction in virtual memory. We can easily let the linker do the job
for us, by creating a label pointing to the next instruction after turning on the
MMU. The stack pointer needs also to be relocated in order to be able to access
the stack.

11

0

Controlling the MMU 1is done via the system control register accessible
through coprocessor 15. We first read out the current configuration, set the
MMU-enable bit as well as the bits for enabling the instruction and data cache
and alignment checking and write the resulting value back to the system control
register.

Due to the pipeline in ARM processors the CPU will already have fetched
two instructions by the time the MMU gets active. We solve this problem by
inserting a NOP operation after relocating the instruction pointer. Listing 1
shows the MMU setup procedure.

start_mmu_config:

mrc pl5, 0, r0, c2, cO, 2 // read out TTBCR
orr r0, r0, #1 // VA >= 2GB are now translated
mcr pl5, 0, r0, c2, cO, 2 // with L1 table saved in TTBRI.
mecr pl5, 0, r8, c¢2, c0, O // store L1 address temporarily
// in TTBRO (for 1:1 mapping)
mcr pl5, 0, r8, c2, cO0, 1 // store L1 address in TTBRI
ldr r0, =0x55555555 // Initial domain permissions
mecr pl5, 0, r0, c3, cO, O
ldr Ir , =$start_-with_mmu_enabled // Address to continue at
ldr r0 , =KERNEL_ OFFSET // when paging is enabled
add sp, sp, r0 // relocate stack

sub sp, sp, r9

ldr rl, =0x1007 // Enable: D-Cache, I—-Cache
// Alignment , MMU
mrc pl5, 0, rO0, cl, cO, O

orr r0, r0, rl

mcr pl5, 0, rO, cl, cO, O // MMU is enabled

mov pc, Ir // relocate program counter
mov r0, r0

Listing 1: MMU set up procedure

4.1.4 Context Switch

Due to the memory split, a context switch is easily implemented. Process A
makes a system call or gets preempted and is thus executing kernel code in its
virtual address space. We save the process state (register values) in the corre-
sponding dispatcher control block (DCB) and switch into the virtual address
space of process B. Since we implemented the memory split with the use of
TTBRO and TTBR1, we effectively just write the address of B’s L1 page table
into TTBRO, but we are still in high memory, which gets translated by TTBR1.
We have to flush the TLB, to get rid of cached values of the old mapping. Now
we can restore the state of process B and resume it by updating the program
counter accordingly.

4.1.5 Exception Handling

The exception vector clearly belongs to the kernel space. As it is by default
located at address 0x0000000, we first relocate it to its high memory address
(0xffff0000) to be consistent with the memory split. Since the CPU mode, in
which we handle the exception, is dependant on the type of the exception and

12

Gk W N R

each CPU mode has its own copy of the stack pointer, we have to setup a small
stack for each mode.

Some difficulties arise by the fact that on ARM the exception vector con-
tains actual instructions, instead of jump addresses like on x86. Normal ARM
instructions are encoded in 32 bit, but this also includes the op code. Since the
whole virtual address space is 4GB (32 bit) we have to employ a little trick to
be able to jump to any address. At a constant offset to the exception vector
we create a jump table containing the addresses of the corresponding exception
handlers. In the exception vector itself we use the LDR instruction, which al-
lows us to load a value from a pc-relative address into a register. We use this
instruction to update the program counter with the address of the exception
handler. Listing 2 shows the code for filling the exception vector with the right
instructions and listing 3 shows a memory dump of the exception vector and
the jump table (with constant offset 0x100).

exceptions_install_handler: //(r0 = exoffset, rl = addr of handler)
ldr r2 , =ETABLE.ADDR // store handler address at
add r2, r2, ##JUMP_TABLE.OFFSET // ETABLEADDR + JT_OFF
add r2, r2, r0 // + exception_offset
str rl, [r2]
ldr r2 , =ETABLE_ADDR // load constants

ldr r3, =LDR
mov rd, #JUMP.TABLE.OFFSET

add r2, r2, r0 // add offset to base

sub rd, rd, #0x8 // subtract 8 bc of pipeline

orr r3, r3, r4 // =LDR pc,<addr of handler>

str r3, [r2] // store instt in ex vec
Listing 2: Exception vector setup

0xffff0000: b 0xffff0000

0xffff0004: 1dr pc, [pc, #248] // pc = value at Oxffff0104

0xffff0008: ldr pc, [pc, #248] // pc = value at Oxffff0108

0xffff000c: l1dr pc, [pc, #248] // pc = value at O0xffff010c

0xffff0010: ldr pc, [pc, #248] // pc = value at Oxffff0110

0xffff0014: b 0xffff0014

O0xffff0018: ldr pc, [pc, #248] // pc = value at Oxffff0118

0xffff00lc: l1dr pc, [pc, #248] // pc = value at OxffffO0llc

0xffff0104: <addr of undef handler>
0xffff0108: <addr of swi handler>
0xffff010c: <addr of pabt handler>
0xffff0110: <addr of dabt handler>
0xffff0118: <addr of irq handler>
O0xffff0l1lc: <addr of fiq handler>

Listing 3: Exception vector memory dump

The various assembly level exception handlers itself basically save the cur-
rent context (eg. the faulting instruction in case of a page fault) and pass the
arguments they received along to the C level exception handlers, which do the
actual exception handling.

4.1.6 Devices

In order to provide basic functionality like basic i/o, generating and handling in-
terrupts and timer based scheduling, we had to implement several device drivers.

13

For a large part we used Mackerel [20], a domain-specific language for describing
hardware devices. The Mackerel language is designed to simplify the transcrip-
tion from a hardware data sheet into code. Once this transcription process is
done for a particular device, Mackerel generates code for accessing and manipu-
lating the specified registers, typically in form of a large C header file consisting
of a large number of inline functions. Mackerel uses shift operations to create
the appropriate values and is therefore endian independent.

UART Gemb) simulates the same UART device for the ARM architecture as
QEMU and therefore we did not have to write a separate device driver, but could
use the existing of the Barrelfish ARMv5 port with some minor modifications.
The serial driver is very simple. It has the ability to send/receive a single
character to/from the serial port. To print a string we have to loop over the
characters and print each character separately.

In order to set up the serial subsystem, we map the device base address into
the kernel virtual address space and initialize the device with appropriate con-
figuration values. We actually initialize two UART devices in order to provide
a normal serial console and a debug console.

Interrupt Controller The simulated interrupt controller complies to the
ARM GIC architecture [14]. We first map it into the kernel’s virtual address
space and extract some implementation specific information about the inter-
rupt controller, like the number of interrupts supported and the number of
active CPU interfaces. We then set up the CPU interface by setting the priority
mask to the lowest priority, since we want every interrupt forwarded to our sin-
gle CPU, and enabling the forwarding from the CPU interface to the processor.
Finally we globally enable the forwarding of interrupts from the distributor to
the CPU interface.

To enable an interrupt we provide the pic_enable_interrupt-function. Listing 4
shows the prototype of this function.

void pic-enable_interrupt (uint32_t int-id ,
uint8_t cpu-targets,
uintl6_-t prio,
bool edge_triggered ,
bool one_to_n)

Listing 4: Interrupt enable prototype

int_id is the ID number of the interrupt. cpu_targets is a one byte bit-field where
each one means the interrupt should be forwarded to the corresponding CPU
interface. In our single-core implementation the value of this parameter will al-
ways be one for obvious reasons. prio denotes the interrupt priority. egde_triggered
selects whether the interrupt should be edge-triggered or level-sensitive. An
edge-triggered interrupt is asserted on detection of a rising edge of an interrupt
signal and remains asserted until it is cleared. An interrupt is level-sensitive if it
is asserted whenever the interrupt signal level is high and deasserted whenever
the level is low. The last parameter has no importance in a single-core system,
but we will come back to it, when we describe the multi-core implementation.
When an interrupt gets forwarded to the processor, we first acknowledge
it by reading the Interrupt Acknowledge Register in the CPU interface, which
returns us the interrupt ID. When the processor acknowledges the interrupt

14

at the CPU interface, the Distributor changes the status of the interrupt from
pending to active. At this point the CPU interface can signal another interrupt
to the processor, to preempt interrupts that are active on the processor. If there
is no pending interrupt with sufficient priority for signalling to the processor,
the interface deasserts the interrupt request signal to the processor.

When the interrupt handler on the processor has completed the processing
of an interrupt, it writes to the End of Interrupt Register to indicate inter-
rupt completion. When this happens, the distributor changes the status of the
interrupt to inactive.

Timers Inour implementation we have two kinds of timers, a peripheral timer,
which we use for preemptive scheduling and a CPU local timer, which we use as
a time stamp counter for debugging and benchmarking purposes. Since these
are different devices we had to implement a device driver for each one of them.

The scheduling timer is a periodic timer, meaning it gets automatically
reloaded with the initial load value after counting down to zero, which is what
we want for scheduling. The load value can be configured by the user with a
kernel command line parameter. The timeslice kernel command line parameter
tells the kernel in which interval (in ms) a new process should get scheduled.
The Timer is connected to the Amba Peripheral Bus (APB) clock and with each
APB clock cycle the timer value gets decremented by one. We can therefore
calculate the load value with

load_val = timeslice - APB_.CLOCK_FREQ / 1000

At last we enable the timer interrupt with the function described in the previous
section. Note that the timer has not started yet and we do that at a later stage,
since we do not need scheduling at this stage.

We initialize the time stamp counter to be auto reloading, load it with the
maximal possible value and start it immediately. When we read out the timer
value we negate it since the timer is counting down but we want increasing
timestamps.

4.1.7 Ramdisk

All the user space programs are stored in a ramdisk, because we do not support
a hard disk yet. The ramdisk gets mapped into memory by Gemb at a fixed
location. Normally the boot loader would pass the location and the size of the
ramdisk to the kernel via ATAG headers [24].

Unfortunately Gem5 does not set the corresponding ATAG header so we
hardcoded the location into the code. Since the size of the ramdisk is constantly
changing whenever there are changes to some of the modules, we use a script
which hooks into the compilation system. It first compiles every module, creates
the ramdisk and writes the size into a header file. Finally it compiles the kernel
again to include the updated size information. Note this script was already
available from previous ARM ports which ran into the same problems.

4.1.8 Setting up user space

In order to launch the first user space application init, we need to prepare its
environment first:

15

1. Allocate and populate pagetables and switch to inits address space

2. Set up important capabilities for init

@

Initialize and map the bootinfo struct, which holds essential information
for the init process to allocate and manage its address space

load the init image from the ramdisk into memory
Prepare command line arguments for init

Creating and initializing a DCB

N o

Allocating memory and creating memory capabilities for all modules in
the ramdisk

8. Schedule the DCB

init will further initialize the user space and eventually start mem_serv and
the monitor process. The monitor takes over from then on, since it is the
unprivileged user space counterpart of the CPU driver and will bring up all the
other modules.

For the single-core port we were done now. Most of the user space modules
are not architecture specific or did not need any changes to work.

4.1.9 Problems encountered with Gem5 and the ARM GCC

This section is dedicated to document some of the many difficulties we encoun-
tered using the Gemb simulator and the ARM GCC. They are not directly
related to porting Barrelfish to ARMv7-a, but we feel we should also document
them because other people building up on our work and working with those
tools could learn from our solutions to those problems and because we had to
invest a large amount of time to find and fix them.

Gemb is a research simulator and therefore under heavy development, mean-
ing lots of changes in a relative short amount of time. We had to constantly
rewrite our Gemb system configuration script, since a lot of interfaces changed
and new features were added during our time working with Gem5. At one point
we decided to fix a specific release of Gemb to avoid constantly updating our
system script and deal with new breakages in the Gemb code.

The ARM simulation on Gemb5 is very Linux specific, it does some things
which we had to patch out, since they did not work with Barrelfish. Another
problem was that Gemb did not handle interrupts on ARM correctly. There
was an error with bounds checking on interrupt numbers, which caused some
interrupts to never fire. We ended up with a fixed release and patches for those
problems which everyone has to apply to make Barrelfish run on Gem5.

To spot these problems we could debug Gemb5 with an ordinary debugger
and step the code to see, what exactly is going on inside Gemb. Usually we
had some clues from the errors where we had to search, otherwise this approach
would barely be possible, since Gemb is a fairly complex software system.

The second tool which caused problems was the ARM compiler we used. On
ARMv7-a every access to memory has to be aligned to a four byte boundary.
This caused troubles when accessing data in a struct. Because of a bug in the
compiler not every element of a struct was aligned to four bytes, leading to
a data abort when accessing them. To fix the problem we had to manually
force the alignment to four bytes of members of certain structs. Fortunately,

16

these kinds of problems were easily isolated, since Barrelfish dumps the register
contents and the faulting instruction. The difficulty here was to know about
the alignment constraint of ARMv7-a in the first place.

In order to debug Barrelfish we compiled the code with optimizations turned
off. After getting everything running we turned them on again, just to encounter
a series of very strange errors. After countless hours of debugging at assembly
level (since debugging the C code with optimizations turned on is fruitless with
these kinds of problems) and analysing the problems by using the tracing ability
of Gemb, where we could see each operation that got executed on the CPU, we
saw that the compiler had problems with some inline functions. The easy fix
was just to declare them as non-inline at the cost of losing performance, but
that was not an issue for us.

All these problems were extremely hard to spot, since we had to rule out any
possibility of the Barrelfish code failing, before turning to our tools and search
for the error there. We hope we can give other people working with Barrelfish
and those tools a starting point of where to look for possible sources of error.

4.2 From single-core to multi-core

After reaching our first goal, bringing up Barrelfish on Gem5 using a single core,
we focussed on implementing multi-core support. Right at the beginning we had
a fundamental design choice to make. The current ARM port was very static,
meaning it relied on being loaded at a specific location in memory, had a lot of
hardcoded addresses and was just not flexible. One approach would have been
to build upon these prerequisites, which would have implied fixed hardcoded
memory locations for the different kernel images, a lot of mapping hacks to
support global shared data between kernels, since the kernel image could not be
relocated and a very inflexible framework for future extensions.

Another approach was to rewrite the single-core port to support dynamic
kernel relocations to be able to dynamically allocate the space for the kernel
image and put it in memory where ever we want to. This simplifies a lot since the
kernel images can be at different locations in the virtual address space. Despite
the higher initial effort needed, we decided to go with the second approach,
since we think it will also be good for future expansions. Another bonus with
this approach was to bring the ARM port much more in line with the x86 port,
which makes it easier for people working with the x86 port understanding the
ARM port and simplifies the process of adding new functionality to both ports
in parallel.

4.2.1 Writing a second stage boot loader

As a consequence of our decision to support dynamic kernel relocations, we also
had to let GCC generate a relocatable kernel image. Even though Gemb sup-
ports the loading of ELF binaries it does not support relocations, which needs
to be done by the loader in order to resolve the missing, non position indepen-
dent references. It also does not load important sections and the section header
table needed to perform dynamic relocations. To overcome these shortcomings
we decided to write a second stage boot loader. This also allowed us to mimic a
multiboot [9] compliant boot loader and add multiboot support to the ARMv7-
a port of Barrelfish. Such a boot loader is able to load several modules into

17

memory and make this information available to the OS through a multiboot
information struct. We can simulate this behavior with one big ELF file.

The way it works is the following: We first compile the kernel and every
module we want to use into relocatable ELF images. Then we use objcopy [11]
and generate for each image a new ELF file containing the compiled module as
a binary image in its .rodata section. objcopy also sets some variables where the
copied image begins and how large it is. Then we generate a C-file containing
a function, which returns the multiboot information for all the modules by
referencing the variables set by objcopy. At last we compile the loader code,
including the generated multiboot C-file, and link everything together in one
big ELF file. Figure 2 shows the layout of the final ELF file, which gets loaded
by Gemb.

EIf File Header

Loader program code
(.text)

Loader static data
(.data)

Kernel
ELF binary

Module 1
ELF binary

Module 2
ELF binary

Loader .rodata section

Other Loader
sections

Figure 2: Final ELF file loaded by Gemb

The loader basically gets the generated multiboot information, loads the ker-
nel image into memory and performs the relocation of the non position indepen-
dent references. It then updates the multiboot information with the relocated
kernel image and performs the transition to the kernel entry. The multiboot in-
formation gets passed to the kernel as a parameter completing the whole loading
process.

4.2.2 Multi-core boot up overview

The boot up protocol for the multi-core port differs in various ways from the
boot up procedure of our previous single-core port. We therefore include this
revised overview here. The first core is called the bootstrap processor and every
subsequent core is called an application processor

On bootstrap processor:

1. Pass argument from bootloader to first C-function arch_init

18

2. Make multiboot information passed by bootloader globally available

e

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Al A

Create 1:1 mapping of address space and alias the same region at high
memory

Configure and activate MMU

Relocate kernel image to high memory

Reset mapping, only map in the physical memory aliased at high memory
Parse command line and set corresponding variables

Initialize devices

Initialize and switch to init’s address space

Load init image into memory

Create capabilities for modules defined by the multiboot info

Schedule init and switch to user space

init brings up the monitor and mem_serv

monitor spawns ramfsd, skb and all the other modules

spawnd parses its cmd line and tells the monitor to bring up a new core
monitor setups inter-monitor communication channel

monitor allocates memory for new kernel and remote monitor

monitor loads kernel image and relocates it to destination address
monitor setups boot information for new kernel

spawnd issues syscall to start new core

Kernel writes entry address for new core into SYSFLAG registers
Kernel raises software interrupt to start new core

Kernel spins on pseudo-lock until other kernel releases it

repeat steps 15 to 23 for each application processor

On application processor:

25.
26.
27.
28.
29.
30.
31.
32.
33.

Gemb bootloader reads address in SYSFLAG and jumps there
Get boot information from well known address

Do early boot up like on bootstrap processor (steps 3 to 8)
Release pseudo-lock

Initialize and switch to monitor’s address space

Load monitor image into memory

Schedule monitor and switch to user space

monitor initializes its end of UMP

monitor spawns spawnd and signals other monitors about its progress

Please note that we could theoretically start the new core dynamically at
any point after the monitor has booted, i.e. the boot process of an additional
core is not tied to a particular stage in the overall boot up procedure.

19

4.2.3 Memory Layout

We still implement a memory split the same way we did in the single-core port.
The only real difference is that the kernel image can now be loaded anywhere in
memory instead of only at a fixed location. The kernel stack and page tables are
statically allocated and part of the kernel image. Since the kernel is not statically
linked to a fixed address in high memory anymore, we have to relocate the kernel
image during boot up. We do this by adding our memory offset constant (2GB)
to the current kernel location to make sure the kernel is in high memory after
the relocation. The program counter and stack pointer need to be relocated as
well and we do this again by just adding the memory offset constant to their
current values. After these relocations we can reset the 1:1 mapping of the
physical memory and only map in the high memory aliased regions to finally
get our desired memory layout.

To simplify global shared data between kernels at boot up, i.e. before the
message passing has been set up, we reserved the first MB of physical memory
for this purpose.

4.2.4 Exception Handling

There was nothing to be changed in the way we handle exceptions. We only had
to change the way we map in the exception vector in the kernels address space.
In the single-core port we just mapped the exception vector to the kernel section.
This worked because relative to a section boundary the exception vector is at
an offset of 0xf0000 and our kernel is small enough to fit in the first 0xf0000
bytes (approx. 980 KB) of a section. If the kernel can be placed at an arbitrary
location in the virtual address space, we can not assume anymore that we will
not cross this boundary, i.e. the exception vector would overwrite some kernel
code.

To solve this problem we map each exception vector (for each core one) to a
well known address in the first section of physical memory. This mapping looks
as follows:

core 0: Ozffff0000 — 0x80000
core 1: Ozffff0000 — 0281000
core 2: Ozffff0000 — 0282000

4.2.5 Interrupt Controller

As already mentioned the interrupt controller consists of a centralized distribu-
tor and a local CPU interface for each core. We had to change the initialization
of the interrupt controller in that we initialize the distributor and the CPU in-
terface if we are on core 0, the bootstrap processor, and only initialize the CPU
interface on all other cores. Otherwise the things described in the previous
section also apply here.

We want to focus here on the last parameter of the pic_enable_interrupt-
function, which selects how an interrupt should be handled in a multi-core
system. There are two models for handling interrupts:

20

1-N model In this model only one processor handles this interrupt. The
processor acknowledging this interrupt first, gets the corresponding interrupt
number. All other processors acknowledging this interrupt only receive a spu-
rious interrupt number (ID 1023), meaning some other processor has already
acknowledged this interrupt before them. It can also be that two processors re-
ceive the correct interrupt number, if they acknowledge the interrupt at nearly
the same time. If the system relies on executing a particular interrupt handler
only once, it has to be guarded with some kind of guarding mechanism, e.g. a
semaphore.

N-N model In this model all processors receive the interrupt independently.
When a processor acknowledges the interrupt the interrupt remains pending for
the other processors.

At the moment we only really use the interrupt of the timer for scheduling.
Clearly all processors should get this interrupt, so we use the N-N model there.
However as more interrupts are added, one has to decided for each interrupt how
it should be handled and configure the interrupt controller accordingly. Special
care has to be taken for interrupts which must not be taken more than once.

Since we have multiple cores in our system, we can use software generated
interrupts (SGI) as a way of communication between cores. The ARM GIC
specifies a register for this purpose, the Software Generated Interrupt Register.
We can write this register with a CPU target list and the interrupt ID. The ID
field is only 4 bits, because only interrupt IDs 0-15 are valid software generated
interrupts. In our driver for the GIC, we provide the function pic_raise_softirq
to interrupt the cores in cpumask with with irq.

void pic_raise_softirq(uint8_t cpumask, uint8_t irq)

{

uint32_t regval = (cpumask << 16) | irq;
pl130_gic.ICDSGIR_rawwr(&pic, regval);

Listing 5: Raise SGI function

4.2.6 Snoop Control Unit

The Snoop Control Unit (SCU) connects up to four processors to the memory
system. It maintains data cache coherency between the processors, initiates
L2 memory accesses, arbitrate between processors requesting L2 accesses and
manage accesses to the Accelerator Coherency Port (ACP) [1]. Through the
ACP it is possible to connect other devices, e.g. a DMA-controller, such that
the SCU can maintain cache coherency. The SCU can also be used to discover
the number of cores present in a system.

We had to implement a device driver for the SCU, but since this device works
mostly on its own without further interaction needed, there was not much to
be done. The SCU gets enabled by the bootstrap processor, if there is more
than one core present. To get the number of cores we can just read out the
configuration register of the SCU. Note the SCU simulated by Gemb has no
cache maintenance functionality. It can only be used to discover the number of
cores present in the system. Gemb has a special way of handling caches and
cache coherency. We will explain the implications of this in section 4.2.11.

21

4.2.7 Setting up user space on bootstrap processor

The way the user space is set up on the bootstrap processor did not change
much compared to our single core port. We still have to set up the environment
for init, load it into memory, create a DCB and finally schedule it. The biggest
change is that we do not use a ramdisk for loading the modules anymore. As
already described in section 4.2.1 we can rely on the multiboot information
passed to the kernel to find and load the modules.

After dispatching init, it will further initialize the user space and eventually
start mem_serv and the monitor process. The monitor takes over from then on,
since it is the unprivileged user space counterpart of the CPU driver and will
bring up all the other modules.

4.2.8 Starting an additional core

In this section we will describe the process of setting up the environment for
bringing up an additional kernel and how to signal the other core when and
where to start.

The entry point for starting up additional cores is in the spawnd process.
The spawn daemon decides during boot up which cores to spawn. After boot,
it offers a service on each core to spawn programs from the file system. There
are two ways for spawnd to decide which cores to boot. It queries either the
SKB for a list of available cores or parses its command line arguments. Since
the SKB on ARM is a simplified version of the SKB on x86, it did not support
core discovery, so we had to specify the bootable cores on the command line.
spawnd sends for each application processor a boot core request to the monitor,
waits until it gets a notification that each core is booted and then enters its
spawn service routine.

In the monitor we set up the environment in which the new kernel gets
booted. First we create and initialize a user message passing (UMP) binding,
which is later used by the other monitor for inter-monitor communication. Next
we lookup the location of the CPU driver and monitor binary, using the multi-
boot information and map them in our virtual space. We create two frame
capabilities, which points to newly allocated RAM where the CPU driver and
the monitor are going to be loaded. These capabilities have to be marked as
remote, since they belong to the capability space of the new core. The CPU
driver gets loaded right away, whereas the monitor is loaded during boot up of
the application processor. After that we have to relocate the CPU driver ELF
binary to the physical address, where it had been loaded into. Note that relo-
cation here means resolving all relocation entries in the ELF file. There is no
copying going on. Finally the monitor sets up the arm_core_data struct. This
struct holds important information, needed by the new kernel to boot, such as
the memory region, where it can load the monitor binary into, the location of
the monitor, the frame for its UMP binding, the core id of the bootstrap pro-
cessor etc. We pass that information to the new kernel by placing it at a well
known location, i.e. one page before the start of the new kernel in memory. We
then invoke the ’spawn-new-core’ syscall and let the kernel take over.

The way the kernel starts the new core is very platform specific. Gemb’s
firmware’ inspects the core ID of the core it is being run on. If this is ID 0 the
program counter jumps to the entry point of the kernel and starts executing.

22

Otherwise the core executes the wfi (wait for interrupt) instruction and does
exactly what this instruction says. After getting woken up by an interrupt,
it reads the entry address from SYSFLAGS, a system-wide general purpose
register, and jumps to that address. Together with the fact that we have a
separate CPU driver for each core, this also implies that we have to boot up the
cores sequentially.

We get the entry address and the core ID of the application processor in
the kernel from the monitor (via the syscall). First we set a global pseudo-lock
to AP_STARTING_UP, which is later used to detect the boot up of the new core.
Then we write the entry address to the SYSFLAGS register and signal the other
core by raising a software interrupt using the pic_raisesoftirq function. Before
we return, the kernel spins on the pseudo-lock until the application processor
writes AP_STARTED to it.

The application processor has the same entry point as the bootstrap proces-
sor. Right at the beginning we get the information passed to the application
processor from the well known location, which contains everything, the new
core needs to know to boot. The early boot up is basically the same as on the
bootstrap processor. After we have initialized all devices, we set the value of
the pseudo-lock to AP_.STARTED, to signal the bootstrap processor our progress.

4.2.9 Setting up user space on application processor

Unlike on the bootstrap processor, init is not the first process started, in fact
it is not started at all. We start the monitor as the first process, but before we
can do that we need to set up its environment, which was already partly done
by the bootstrap processor. The basic setup is the same as on the bootstrap
processor. The memory allocator will allocate memory in the frame, which the
bootstrap processor has allocated for us. Additionally we have to create a frame
for the UMP binding, which we got from the kernel on core 0 and map it in
the monitors virtual space. Before we dispatch the monitor DCB and enable
interrupt forwarding to the CPU, we acknowledge the SGI we got from the
bootstrap processor. Otherwise we get interrupted unnecessarily, as soon as we
enable interrupt forwarding.

The monitor will bring up the rest of the modules and signal all the other
monitors, that it has started up and is ready for communication.

4.2.10 Inter-core communication

Barrelfish uses explicit message passing for communication between cores. ARM
is a shared memory architecture with cache coherency and therefore the message
passing interface is implemented on top of this. Fortunately x86 architectures
are also shared memory based and we could use the existing implementation
of the message passing. We encountered some strange errors when remotely
allocating memory. By tracing the created capability through the system, we
found that something went wrong, when transferring the remotely allocated
capability to the requesting core. The reason was the configured payload size
of an UMP packet of 56 bytes. ARM caches have a line size of 32 bytes and
therefore the payload could not fit into a cache line, which is essential for sending
messages via cache coherency protocol messages. We solved the issue by setting
the payload size to 24 bytes.

23

4.2.11 About caches

When doing multi-core OS development, cache handling and maintenance plays
an important role. One has to carefully consider when to flush caches, what
parts of it and how cache coherency is maintained by the system, but not so
on Gemb. Since Gemb is a research simulator, it allows researchers to create
completely new memory hierarchies. There can be arbitrarily deep levels of
caches and therefore normal cache maintenance operations of an architecture
will not suffice. Gemb handles the caches by itself and there has nothing to be
done by the system programmer.

This approach has one major flaw. If one core writes to a memory location
with caches enabled while another core had its caches disabled at the time the
write occurred, Gemb will not maintain cache coherence. When the second core
now reads from this location, even if it turned on its caches in the meantime,
there is a chance that this core will not read the value written by the other core,
and instead reads whatever was there before, since the actual value is still in
the cache of the first core.

This is exactly the situation when we boot up an additional core. Its en-
vironment was set up by the bootstrap processor, which has caches turned on
while the application processor has not been started yet and therefore not acti-
vated its caches. All kinds of strange behavior occurred, because some values,
which are parts of the kernel code in this case, were still in the cache of the
bootstrap processor and not written to memory yet.

To solve this problem we had to map the frame, where the new kernel is
loaded into, uncacheable. This poses a major performance penalty, since all
the accesses to kernel memory will not be cached for application processors.
However on real hardware this will not be a problem, since we could just flush
the cache of the bootstrap processor to make sure, everything gets written to
memory.

4.2.12 Mutual Exclusion

In a multi-core system we need to be able to protect critical resources and code
segments from simultaneous accesses and modifications from different cores.
Despite using message passing and avoiding the use of shared memory (other
than to implement message passing), Barrelfish still needs mutual exclusion in
for example thread synchronization and printing to the console. The job of
an operating system is to provide a low level primitive, which achieves mutual
exclusion, upon which more sophisticated mechanisms can be built. One such
primitive is a spin-lock.

Most computer architectures provide a mechanism for reading and modifying
a location in one atomic step, like compare-and-swap (CAS), or something equiv-
alent, e.g load-link /store-conditional (LL/SC). ARM provides LL/SC primitives
ldrex and strex. Listing 6 shows our implementation of a spin-lock on ARM

24

acquire_spinlock: //r0 holds pointer to lock
1: ldrex rl, [rO]
teq rl, #0
wfene
strexeq rl, #1, [r0]
teqeq rl, #O0
bne 1b

release_spinlock:
str 0, [r0]
sev

Listing 6: Spin-lock implementation

On line 2 we use ldrex to load the lock’s current value into r1. The value 0
represents a free lock and 1 an acquired one. We test if the value of the lock
is 0 (line 3). If this is not the case we execute wfe (wait-for-event) and wait for
an event from another core. Otherwise we try to write 1 into the lock (line 5).
If this succeeds we have successfully acquired the lock, otherwise we try again
from the beginning (line 6 and 7).

The release_spinlock function unconditionally writes 0 to the lock (line 10)
and then executes sev (send-event) to wake up other cores waiting for the lock.
Note that sev is not a SGI, but some other implementation defined mechanism.
It is required by the ARMvT7-a architecture that, if sev is implemented by the
system, wfe is implemented as well.

This concludes the description of our multi-core port. We are able to boot
up to four cores on Gem5 with inter-core communication working. We can also
run applications and benchmarks on top of our system, which we will describe
in the next section.

5 Evaluation

In this section we present the results of our system evaluation. This includes
simple tests, in which certain functionalities are tested, and microbenchmarks,
which measure certain performance characteristics.

5.1 Test systems

We have configured several test systems on which we performed our evaluation.

arm_X This is our basic simulated ARMv7-a system with X cores. Each core
is clocked at 1 GHz and has a 64 KB L1 data and a 32 KB L1 instruction 2-way
associative cache. Additionally we configured a 2 MB L2 8-way associative L2
cache, shared between all cores. The size of physical memory is 512 MB. We
use the AtomicSimple CPU model (see Section 3.2.1) for all cores. The values
for the memory system are chosen to represent a realistic system configuration.

arm_detailed_X This system tries to simulate a 'real’ ARMv7-a system as
closely as possible. We use the O3 CPU model for each of the X cores. L1
data and instruction caches are 32 KB 2-way associative and we have a 1 MB
shared 16-way associative L2 cache. We also configure different cycle counts for

25

the typical operations. Unfortunately, there was an issue with the speculative
execution of the O3 model, which prevented the boot process to proceed after
bringing up the monitors, if more than one core was enabled, which we could
not solve due to time limitations.

x86_64_X We use this system to compare the results of our benchmarks with
the arm_X systems. It simulates X Intel x86-64 cores and is configured as closely
as possible to the arm_X system. Each of the X cores is clocked at 1 GHz and
has a 64 KB L1 data and a 32 KB L1 instruction 2-way associative cache. Ad-
ditionally we configured a 2 MB L2 8-way associative L2 cache, shared between
all cores. The size of physical memory is 512 MB. We use the AtomicSimple
CPU model for all cores.

5.2 Tests

We used various tests to test certain functionality of our system and to check,
whether we are able to run applications on top of our base system. Most of them
are very simple tests, but needed to be passed to run more complex applications
and benchmarks. Only the Multihop test is a bit more complex and tests the
functionality of the multi-hop interconnect driver.

Monitorboot test This very simple test just tests, if the system is able to
boot the monitor. Even the detailed multi-core ARM system could pass this
test.

Machine Result
arm_1 pass
arm_2 pass
arm_4 pass
arm_detailed_1 pass

arm_detailed_2 pass

Table 1: Monitorboot test results

Hellotest The mandatory 'Hello World’ test can not be missing. We used this
test to see if we can run a very simple application, which basically just prints
"Hello World’ to the serial console, on top of our base system. Table 2 shows
the results for each tested system. Note that the detailed system fails the test,
because it can not completely boot and therefore is not able to run the test.
This holds for each subsequent test we did.

26

Machine Result

arm_1 pass
arm_2 pass
arm_4 pass
arm_detailed_1 pass
arm_detailed_2 fail

Table 2: Hellotest results

Memtest Memtest is a simple test for testing the memory integrity and mem-
ory allocation on a single core. Memtest_multicore does the same for every core
in the system. Table 3 shows the results

Machine Result Machine Result
arm_1 pass arm_1 n.a.
arm._2 pass arm-_2 pass
arm_4 pass arm_4 pass
arm_detailed_1 pass arm_detailed_1 n.a.
arm_detailed 2 fail arm_detailed 2 fail
(a) Memtest (b) Memtest_multicore

Table 3: Memtest results

Multi-hop test In this test we send messages from the client to the server
and the opposite way in order to make sure that the multi-hop interconnect
driver works for bidirectional message passing. The multi-hop driver allows
communication between cores, which are not connected directly, but need to
communicate via other cores. It is essentially a routing layer on top of the
underlying point to point interconnect driver. The multi-hop driver worked
for our ARM port out of the box, without any modification needed as Table 4
shows.

Machine Result
arm_1 n.a
arm_2 pass
arm_4 pass
arm_detailed_1 n.a
arm_detailed_2 fail

Table 4: Multi-hop test results

5.3 Benchmarks

Besides tests we also ran various micro-benchmarks in order to compare our
ARM port to the existing x86-64 port of Barrelfish. The x86-64 port of Barrelfish

27

is not maintained for Gem5 and we had to use both, an older version of Gemb
(revision eb82084f1f4f) and an older release of Barrelfish (rev 3274c00b02e5),
both from July 2011, to get it running. Despite these shortcomings, we can still,
at least qualitatively, compare the performance of the ARMv7-a and the x86-64
port of Barrelfish running on Gemb.

5.3.1 Memory usage

The first quantity we want to measure is the memory usage of our system. To
measure this, we wrote a small program, which queries the memory server about
the available and total memory. It is also interesting to look at the memory usage
of the CPU driver separately. The CPU driver is static, meaning it does not
allocate memory dynamically and we can therefore measure its memory usage
by looking how much memory the loaded image needs.

Machine Memory usage Machine Memory usage
arm_1 40 MB x86_64_1 57 MB
arm_2 51 MB x86_64_2 72 MB
arm-4 74 MB x86-64_4 102 MB

(a) ARM system (b) x86-64 system

Table 5: Overall system memory usage

CPU driver on disk in memory

ARM 112 KB 304 KB
x86-64 (2011) 156 KB 4842 KB
x86-64 (2012) 168 KB 4854 KB

Table 6: CPU driver memory usage

Let us first analyse the memory usage of the whole system, which is shown
in Table 5. The base ARM system with one core uses 17 MB less memory than
the corresponding x86-64 system. Both systems are comparable in functionality
and modules which get loaded, so this discrepancy is probably due to the 64-bit
architecture of the x86-64 port. 64-bit applications use in general more memory
than their 32-bit counterparts, because pointers are double the size (8 bytes vs.
4 bytes) and alignment constraints.

One can see that the addition of a core uses 11 MB on ARM and 15 MB on
x86-64. This includes space for the additional CPU driver and monitor, as well
as all the modules which are spawned on an application processor. Interesting
is the fact that the difference of memory cost of an additional core between the
ARM and the x86-64 is roughly the difference in the memory usage of the CPU
driver, as can be seen from the data in Table 6.

When we look at the memory usage of the CPU driver, we can see sev-
eral things. First they are all of comparable size when we look at the size of
the image on disk. However there is big discrepancy in memory usage when
loaded into memory. The difference lies in the .bss section. The x86-64 CPU
driver seems to have a much larger amount of uninitialized data, than its ARM

28

counterpart. The second thing we can see, is that the size of the x86-64 CPU
driver has not changed much from the 2011 release to the 2012 release, despite
a huge increase in functionality. This shows nicely the micro kernel approach of
Barrelfish. In other operating systems, like Linux or Windows, a lot of added
functionality would have gone into the kernel (e.g. drivers, network stack),
whereas in Barrelfish those are all separate user space modules.

5.3.2 UMP benchmarks

We used a set of benchmarks to compare the user message passing performance
between our ARM port and the x86-64 port. On both systems UMP is im-
plemented on top of shared memory and therefore we expected comparable
performance on both systems.

We always measure the number of cycles a certain benchmark needs to com-
plete. Since we are using the AtomicSimple CPU model, where each operation
takes one cycle, for our measurements, we roughly measure the amounts of ma-
chine instructions needed to accomplish a certain goal. Please note that the
measurements taken in this model are far from measurements on real hardware
or even QEMU. We therefore just compare the ARM port to the x86-64 port on
Gemb, since everything else would not allow us to make any serious comparisons.

Since we are measuring CPU cycles we need a cycle counter, which is avail-
able to a user space application on x86 through the rdtsc instruction. The ARM
architecture defines a Performance Monitor Unit, which would provide such a
counter as well, but at the time of this writing Gem5 does not implement this.
Instead we use the CPU local clock as a time stamp counter. This also means
that we need to access this counter through the system call interface. Obviously
much more overhead is involved to get a cycle count on our ARM port than
on the x86-64 port. In fact, the overhead was so large that our measurements
on the ARM port showed roughly the same results for all benchmarks, whereas
they differed significantly on the x86-64 port. We did overcome this shortcom-
ing by first measuring the overhead involved in taking a time stamp, which is
roughly 119 cycles (vs. 720 cycles on x86-64) and subtract that value from each
measurement.

We always measure a certain operation between core 0 and all the other
cores in the system. In the tables below 'dest’ is the core ID of the target core.

UMP send/receive This benchmark measures the cycles needed to send/re-
ceive a message. On a shared memory system sending involves writing something
to memory and adjust a pointer to point to the next position in the message
buffer. Receiving is done via polling. If there is a message in the receive buffer
available return it and advance the position pointer to point to the next slot.
The results are shown in tables 7 and 8.

As one can see in case of the UMP send benchmark the number of cycles
required to send a message differs only by one cycle. Note we do not have big
fluctuations and the results are the same for each core on a system. This is
because Gemb works deterministically. It will always simulate the code in the
same way for the same system and code and if there is no random component
involved the outcome is always the same. Receiving a message takes 4 cycles
less on the x86-64 system, but this is still in a comparable range. We traced
the execution of one receive on the x86-64 and the ARM system and saw, that

29

Machine dest samples median mean sigma min max

arm-_2 1 90 20.0 20.0 0.0 20 20
arm_4 1 90 20.0 20.0 0.0 20 20
2 90 20.0 20.0 0.0 20 20
3 90 20.0 20.0 0.0 20 20

(a) UMP send ARM

Machine dest samples median mean sigma min max

x86-64_-2 1 90 21.0 21.3 1.616 21 30
x86-64_4 1 90 21.0 21.3 1.616 21 30
2 90 21.0 21.3 1.616 21 30
3 90 21.0 21.3 1.616 21 30

(b) UMP send x86-64

Table 7: UMP send benchmark results

Machine dest samples median mean sigma min max

arm-_2 1 90 20.0 20.056 0.524 20 25
arm_4 1 90 20.0 20.056 0.524 20 25
2 90 20.0 20.056 0.524 20 25
3 90 20.0 20.056 0.524 20 25

(a) UMP receive ARM

Machine dest samples median mean sigma min max

x86-64_2 1 90 16.0 16.2 1.077 16 22
x86-64_4 1 90 16.0 16.2 1.077 16 22
2 90 16.0 16.2 1.077 16 22
3 90 16.0 16.2 1.077 16 22

(b) UMP receive x86-64

Table 8: UMP receive benchmark results

the x86-64 system executes less instructions, than the ARM system. For send-
ing both systems execute roughly the same amount of instructions. Since we
make these measurements on the AtomicSimple CPU model, this explains the
difference of 4 cycles in receiving a message.

UMP latency This benchmark measures the latency, i.e. the time from send-
ing a message until the arrival of the answer. The destination core is replying
as soon as it receives the message from core 0. Table 9 shows the results of the
ARM respectively x86-64 port.

We expected the latency to be roughly the sum of the send and the receive
benchmark plus some overhead to propagate the values to the cache of the other

30

Machine dest samples median mean sigma min max

arm-_2 1 900 60.0 60.233 1.462 60 73
arm_4 1 900 60.0 60.233 1.462 60 73
2 900 60.0 60.233 1.462 60 73
3 900 60.0 60.233 1.462 60 73

(a) UMP latency ARM

Machine dest samples median mean sigma min max

x86-64_-2 1 900 85.0 86.12 4.523 85 108
x86-64_4 1 900 85.0 86.12 4.523 85 108
2 900 85.0 86.12 4.523 85 108
3 900 85.0 86.12 4.523 85 108

(b) UMP latency x86-64

Table 9: UMP latency benchmark results

core and response time of the destination core. On the ARM system this seems
to be the case, whereas on the x86-64 system this overhead seems to be rather
large. We examined the amount of polling necessary to receive a message and
saw, that the x86-64 system had to poll on average once more than the ARM
system, which explains the bigger overhead on the x86-64 system.

UMP throughput This benchmark measures the throughput of the message
passing system. It first fills the message buffer and then continues to send, but
can obviously only send something if the receiver has read and processed a mes-
sage. We measure the time between consecutive sends which is the throughput
of the system (every X cycles we can send one message).

Machine dest samples median mean sigma min max

arm._2 1 100 42.0 41.92 1.932 24 47
arm_4 1 100 42.0 41.92 1.932 24 47
2 100 42.0 41.92 1.932 24 47
3 100 42.0 41.92 1.932 24 47

(a) UMP throughput ARM

Machine dest samples median mean sigma min max

x86_64_2 1 100 56.0 56.23 3.205 31 66
x86-64_4 1 100 96.0 56.23 3.205 31 66
2 100 56.0 56.23 3.205 31 66
3 100 56.0 56.23 3.205 31 66

(b) UMP throughput x86-64

Table 10: UMP throughput benchmark results

31

As one can see in the results of Table 10, the throughput on both systems
seem to be roughly the same. This is expected, because of the same memory
model and hierarchy.

With these benchmarks we wanted to compare the ARM port to the x86-
64 port in a important subsystem of Barrelfish. We know this evaluation does
not allow us to quantitatively say something about the performance on a real
system, but we think it shows, that the ARM port and the x86-64 port are
behaving similarly and therefore should not be too far from each other on real
hardware (or in another CPU model).

6 Conclusions

We reached our initial goal to boot Barrelfish on a multi-core ARMvT7-a system
simulated by Gemb, despite the time limitation and the serious obstacles en-
countered with the simulator and the compiler. We can fully boot up to four
cores with inter-core communication completely working. We added support
for dynamic kernel relocations and multiboot compliant boot loaders and in
general brought the ARM port of Barrelfish much more in line with the x86
ports, which helps researchers develop new applications or expansions for both
platforms, since it is much easier for them to understand both systems.

Our evaluation has shown, that the overall system stability is quite good and
we can run different applications and benchmarks on top of the base system.
Together with the memory usage and message-passing benchmarks, which, at
least qualitatively, show that our port performs similar to the x86-64 port, this
work sets a solid foundation for further research into low-power OS design and
support for heterogeneous many-core systems.

During the course of this thesis we also learned a lot. In the end it would
have probably been better to rewrite the single-core port with dynamic kernel
relocation support right from the beginning, instead of porting a somewhat
messy foundation to ARMv7-a and Gem5 and later discarding much of the code
written during this process. However, one can argue that we had to encounter
all the difficulties and implications this approach brought along first, before we
could really make an educated decision in which direction to proceed.

Gemb turned out to be a blessing and a curse at the same time. It is really
easy to configure to resemble a real system or design a completely new one.
It also has nice tracing and remote debugging support, which comes in very
handy, when debugging system software. On the other hand it is a research
hardware simulator and therefore under heavy development. New features are
added and old ones broken on a weekly basis and since there is a relatively
small user base (compared to QEMU for example) it is not that well tested.
This leads to situations, where one simply does not know if the simulator or
the simulated code is failing, which can be really cumbersome. It will also
take a considerable amount of work, if we want to support Gemb with future
releases of Barrelfish. All in all we believe it was worth targeting Gem5, because
of the ability to test Barrelfish on a wide range of different system and as an
intermediate platform, when targeting a new hardware platform, since Gemb
can simulate real hardware much more accurately than for example QEMU.

32

7 Future Work

There are several areas where we see potential for future work. Two main issues
are remaining, which should have been covered by this thesis, but could not be
done because of time limitations. One issue is the lack of multi-core support
for the O3 CPU model. This could be an issue with the Barrelfish code, but it
could also be that Gem5 does not handle speculative execution correctly in all
cases. We just did not have time left to look further into this issue. The second
issue is the very minimalistic evaluation. There are many more areas, where a
benchmark would be interesting, like context switch time, FPU performance,
interactive workloads etc. We just took the readily available micro-benchmarks,
which we could run on our system with minimal modifications, due to lack of
time porting more sophisticated benchmarks. It would also be interesting to
compare our current ARM port of Barrelfish to an ARM port of Linux running
on Gemb.

In a next step one could further enhance this port by implementing support
for PCI and the shell fish. This would somewhat complete the user space, since
an interactive shell is something a user expects of a desktop operating system.
Implementing a network card driver for the simulated network card would open
up a new set of possibilities to investigate how the network stack performs and
compare it to the performance of the Linux network stack on Gemb.

Probably the most interesting thing to do, research-wise, is to take this
code base and port it to real hardware, since properties like power consumption
can only really be measured on real hardware. Some researchers of the Systems
Group at ETH Zurich are working on bringing up Barrelfish on the PandaBoard
[17] using this work as the foundation. The ultimate goal would be getting hands
on a board implementing the ARM big.LITTLE architecture [10] and enhance
Barrelfish to support this heterogeneous multi-core system. Let us suppose the
system has two high-performance Cortex-A15 and two Cortex-A7 low-power
cores, which we want to use optimally, considering that we want to get the best
user experience together with the lowest possible power consumption. This
would bring up some very interesting questions for the scheduler, some of them
are:

e How does the scheduler decide, which task gets scheduled on which core?

e When and how should the system migrate task from the low-power to the
high-performance core and vice versa?

e Should the scheduler auto-tune its behavior and if yes, how can this be
achieved?

These and other questions require lots of research and measurements, but are
very interesting and fundamental for future low-power OS design on heteroge-
neous many-core systems.

33

References

[1]

2]

ARM. Cortex-A9 MPCore Technical Reference Manual. ARM, 110 Ful-
bourn Road, Cambridge, England CB1 9NJ, r3p0 edition, July 2011.

Arch Linux ARM. Arch linux on arm. http://archlinuxarm.org/about,
2011-2012.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and
Akhilesh Singhania. The multikernel: a new os architecture for scalable
multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP 09, pages 2944, New York, NY,
USA, 2009. ACM.

Andrew Baumann, Simon Peter, Adrian Schiipbach, Akhilesh Singhania,
Timothy Roscoe, Paul Barham, and Rebecca Isaacs. Your computer is
already a distributed system. why isn’t your os? In Proceedings of the
12th conference on Hot topics in operating systems, HotOS’09, pages 12—
12, Berkeley, CA, USA, 2009. USENIX Association.

Charly Bechara. Booting arm linux smp on mpcore. http://linux-arm.
org/LinuxBootLoader/SMPBoot, March 2012.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and
Henry M. Levy. User-level interprocess communication for shared mem-
ory multiprocessors. ACM Trans. Comput. Syst., 9(2):175-198, May 1991.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1-7, August 2011.

Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G.
Saidi, and Steven K. Reinhardt. The m5 simulator: Modeling networked
systems. IEEE Micro, 26(4):52-60, July 2006.

Inc. Free Software Foundation. Multiboot specification. http://www.gnu.
org/software/grub/manual/multiboot/multiboot.html, 2009.

Peter Greenhalgh. Big.little processing with arm cortex-al5 & cortex-a7.
Technical report, ARM, September 2011.

Free Software Foundation Inc. objcopy. http://sourceware.org/
binutils/docs/binutils/objcopy.html.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4:
formal verification of an os kernel. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages 207—
220, New York, NY, USA, 2009. ACM.

34

[13]

[14]

[15]

[16]

[24]

Ben Leslie. L4 microkernel on arm. http://14hq.org/arch/arm/, 2002-
2007.

ARM Limited. ARM Generic Interrupt Controller Architecture Specifica-
tion. ARM Limited, 110 Fulbourn Road, Cambridge, England CB1 9NJ,
architecture version 1.0 edition, September 2008.

ARM Limited. ARM Architecture Reference Manual. ARM Limited, 110
Fulbourn Road, Cambridge, England CB1 9NJ, armv7-a and armv7-r edi-
tion, November 2011.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill,
and David A. Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News, 33(4):92-99,
November 2005.

Pandaboard.org. Pandaboard. http://pandaboard.org/content/
platform, 2012.

Simon Peter, Adrian Schiipbach, Paul Barham, Andrew Baumann, Rebecca
Isaacs, Tim Harris, and Timothy Roscoe. Design principles for end-to-end
multicore schedulers. In Proceedings of the 2nd USENIX conference on
Hot topics in parallelism, HotPar’10, pages 10-10, Berkeley, CA, USA,
2010. USENIX Association.

The FreeBSD Project. Freebsd on arm. http://www.freebsd.org/
platforms/arm.html, 1995-2012.

Timothy Roscoe. Mackerel 1.4 User Guide. Systems Group, ETH Zurich,
2011.

Bram Scheidegger. Barrelfish on netronome. Master’s thesis, ETH Zurich,
July 2011.

Adrian Schiipbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul
Barham, Tim Harris, and Rebecca Isaacs. Embracing diversity in the Bar-
relfish manycore operating system. In Proceedings of the Workshop on
Managed Many-Core Systems (MMCS), Boston, MA, USA, June 2008.

Microsoft Inc. Steven Sinosky. Building windows for the arm proces-
sor architecture. http://blogs.msdn.com/b/b8/archive/2012/02/
09/building-windows-for-the-arm-processor-architecture.aspx,
February 2012.

Inc. Vincent Sanders. Atag header reference. http://www.simtec.co.
uk/products/SWLINUX/files/booting_article.html#appendix_tag_
reference, June 2004.

35

