
Bachelor’s Thesis Nr. 308b

Systems Group, Department of Computer Science, ETH Zurich

Formal semantics for Devicetrees

by

Sandro Rüegge

Supervised by

Lukas Humbel, Prof. Dr. Timothy Roscoe

March 2020 - September 2020

Abstract

The world of computers is becoming more complex and this trend does
not stop at the hardware boundary. Formal models can help to reduce
errors as well as development time. In a perfect future world, hardware
manufacturers would provide such formal descriptions for their products.
We are not quite there yet, hence by using existing machine readable, but
informal descriptions we can save a lot of manual work and learn about
the shortcomings and benefits of both, the informal description and our
formalization.

To this end I analyze Devicetrees and Sockeye to find out what they
provide us with and what some common subset is. Then I show that
Devicetrees can be used to generate prototype Sockeye memory decoding
networks doing a lot of usually manual work in an automated fashion.
Finally I present a compiler that performs such a translation for some
default interpretation of the Devicetree memory representation.

1

Acknowledgements

Ahead of all else I would like to thank my supervisors Lukas Humbel and Prof.
Dr. Timothy Roscoe for their invaluable support and input during this thesis.
Thanks also to David Cock for the feedback on my draft. Furthermore I would
like to thank the ETH Systems Group, in particular the Sockeye team, for the
regular meetings where they provided feedback and insights.

2

Contents

1 Introduction 5

2 Related Work 7

3 Background 9

3.1 Devicetrees (DT) . 9

3.1.1 Format . 10

3.1.2 Memory/Addressability 15

3.1.3 Interrupts . 16

3.2 Sockeye . 17

4 Semantics for Devicetrees 18

4.1 Devicetree Analysis . 18

4.2 Useful Semantics . 19

4.3 Devicetrees vs Sockeye . 22

5 Compiler 24

5.1 Parser . 25

5.2 Build AST . 25

5.3 Formalization . 28

5.4 Code Generation . 29

6 Evaluation 32

6.1 Parsing . 32

6.1.1 Linux . 32

6.1.2 FreeBSD . 32

3

6.2 Code Generation . 33

7 Conclusions 35

8 Future Work 36

8.1 Sockeye Interrupt Backend . 36

8.2 Language for Formalization . 36

8.3 Use Yaml bindings Linux source 36

8.4 Super DT . 36

A Devicetree EBNF 38

B Internal AST 39

4

1 Introduction

We are experiencing a fast and ongoing trend towards more diverse hardware.
Even platforms as small in size as mobile phones consist of a lot of hetero-
geneous, interconnected components. As an example the Devicetree for the
colibri-eval board (more on these two later) has 498 nodes. The components
can be of different architectures and use interconnects to perform interactions
between them. This complexity increases the challenge of writing reliable and
correct software to manage such systems by a multi-fold. The precise hardware
behaviour generally has to be extracted from long hardware descriptions in plain
English, a process that is both error prone and very time consuming.

Formal models are an effective tool to describe properties of such a systems in
a concise and exact way. Leveraging their precision enables reasoning about
system behaviour from SOCs to whole data centers. Such models don’t trivially
arise for existing hardware. On the contrary the task of writing a formal descrip-
tion for a piece of hardware still requires in-depth knowledge of the platform.
As a consequence it is very time-consuming to run or test systems that leverage
formal knowledge on more than a select few platforms. To facilitate prototype
creation of formal descriptions on new platforms it would be of interest to reuse
existing descriptions of hardware.

The focus in this work will be put on two specific hardware description frame-
works. On one side we have Devicetrees (subsection 3.1), a highly capable but
informal hierarchical data structure for passing hardware information to a piece
of client software. They are in active use today on hundreds of different plat-
forms and have proven themselves to be useful in particular in configuring Linux.
However they were not designed with a formal background in mind. Sockeye
(subsection 3.2), on the other hand, is a research project, with the main focus on
the development of a model, rather than creation of descriptions for all available
boards. In fact such definitions are only available for a handful of boards.

I analyze the capabilities of the two different projects for describing hardware
features. We would like to know what Sockeye might be able to learn from
Devicetrees and vice versa. Since Sockeye claims to be complete in some sense
we wonder whether we can find systems that are expressible in Devicetree but
not in Sockeye. Now assuming Sockeye was actually complete, can we express
what Devicetrees are missing to become more complete? Based on this analysis
I then assign a default formal semantic to a subset of Devicetrees. Default in
the sense that it is a useful interpretation of the data but not guaranteed to be
correct. in all cases.

Finally we would also like a tool to transport a common subset of information
from Devicetrees to Sockeye. To this end I present a new compiler for generating
a prototype Sockeye memory description from a valid Devicetree. Focus is put

5

on a formalization step where we assign a formal meaning to the contents of the
Devicetree while still allowing developers to define an alternative interpretation
if so desired. In the interest of access to the jungle of Devicetrees present already
in the Linux and FreeBSD source trees, we make sure that we are able to parse all
their .dts files. Furthermore we check whether the default semantics we choose
for interpretation are applicable in a wide range of cases from the mentioned
sources. Lastly we would also like to check at least for some example that
the generated definitions can be used to query for knowledge presented by the
original description.

To give readers an idea what awaits them, I give a short outline of the contents
of this thesis. We start with an overview of the related work (section 2) that
influenced this thesis to various degrees. It is then followed by an in-depth
description of the two projects central to this thesis, namely Devicetrees and
Sockeye, in section 3, the background section. Next section 4 analyzes the
Devicetree semantics in more depth. In section 5 I present a compiler that
parses Devicetree files, performs formalization of the contents and automatically
generates a Sockeye memory decoding net.

6

2 Related Work

There is already a substantial body of work in the field of hardware descriptions
and usage thereof. In this section I would like to summarize only a few of them
that give some relevant context for this thesis.

Projects like the Barrelfish [13] operating system by the ETH Systems Group
[12] already leverage formal knowledge about hardware. It is a multi kernel
research operating system that can be used to explore platform management
on heterogeneous hardware. Each CPU core runs a separate kernel on top of
which the operating system runs distributed in single-core processes. A central
component called the System Knowledge Base (SKB) collects information about
the system. It is based on Eclipse/CLP as Prolog engine, a language for first
order logic, which uses facts and rules to create a set of relations. Queries can
be executed against its state to determine properties of the system like aliases
of memory locations.

When looking closely at real hardware one has to come to the conclusion that
a shared view of memory by a whole platform is an illusion. A solution to
describing memory in its true complexity is provided by the work Achermann
et al. [9] They propose address decoding networks (ADN) that allow different
views of addressability in a single system to be described.

In his master thesis [11] Daniel Schwyn introduces the domain specific language
Sockeye as a syntax for ADNs. He shows how it can be used in Barrelfish
OS to reduce device-specific code both statically during compilation as well as
dynamically on a running system. Page table configurations can be generated
when compiling the operating system and generic device code can dynamically
query the SKB for information about the hardware to correctly configure the
platform during runtime. As Sockeye is the target language of this thesis it has
its own space in 3.2.

Another project attempting description of SOCs (although in an informal way)
are Devicetrees. They are widely used today already, in particular on ARM
platforms. In subsection 3.1 I provide an in-depth description. There are some
efforts to verify Devicetree code using static checkers [14] for property definitions
in yaml format. Though they are mostly syntactical, they can still be very useful
to catch human errors early on in the development process.

Sadik Arslan and Geylani Kardas recently presented a model-driven approach to
Devicetree software development [10]. Thanks to visual representations, static
code checking and more restrictions on the data representation than in the
Devicetree specification, they are able to substantially support developers in
the production of Devicetrees.

In contrast to the methods mentioned up to this point, there are also dynamic

7

approaches. They allow the operating system to discover and configure de-
vices during runtime, possibly getting the required information directly from
the hardware in question. ACPI [5] is a widely used standard that provides
component information to the OS. It has its own machine language that needs
to be executed by the OS using some interpreter. Though it is criticized for
the complexity of its specification and the security implications of external code
execution inside the kernel, its wide availability and reliability prove effective
in real world use. The peripheral component interconnect (PCI) specification
includes a PCI configuration space that contains some information about the
devices present that the operating system can use to select a driver. Though for
more complex configuration tasks the given information might be insufficient
without broader knowledge about the specific hardware.

8

3 Background

To be able to understand the differences between Devicetrees and Sockeye we
need a solid background. This chapter focuses fully on the two projects. De-
vicetrees in particular have some very interesting behaviours that influence later
decisions and are thus explained in detail.

3.1 Devicetrees (DT)

A piece of software managing a platform needs to be able to acquire knowledge
about the hardware that is present. Devicetrees were originally designed by
Open Firmware [7] to solve the problem of firmware needing to tell client code
about non discoverable devices on a platform. As such Devicetrees also provide
a solution to the problem of passing the necessary information to operating
systems when devices themselves are not able to provide it. The trees are
usually passed to the kernel by a piece of firmware. A common way to achieve
this is to load a binary representation of the Devicetree into memory and tell
the kernel about it’s location. U-Boot [15] is a prime example for a boot loader
that handles Devicetrees.

As mentioned in the introduction we are interested in particular in the Device-
trees of the Linux [6] and FreeBSD[8] source trees and we will now have a quick
look at the corresponding toolchains. Devicetree files in the Linux source can
be found in architecture specific directories of the form arch/<arch>/boot/dts.
The tool chain in the Linux source tree accepts Devicetree files, optionally with
includes, and processes them first using the C pre processor. This allows includ-
ing .h files and using macros for specifying values in the Devicetree. Although
this is a very useful feature for maintainability by sharing constants between
the Devicetree and C code, it is arguably also a shortcoming of DTs that this
is necessary. Next it uses the Devicetree compiler [4] (DTC) to create a binary
representation of the Devicetree, called a flat Devicetree, that is understood by
the Linux kernel. During runtime, the tree is accessible in a pseudo file sys-
tem at /proc/device-tree/. The tree can be dynamically edited at runtime;
for example to reflect state changes. Some Devicetrees additionally rely on
the firmware to overwrite certain properties at runtime with dynamical values.
There are several examples of such behaviour in the Linux source tree, one of
which can be found at arch/arm/boot/dts/imx6q-h100.dts. The toolchain
for Devicetrees in the FreeBSD source tree is very similar.

To get started, I include a heavily cut down version of the Devicetree used with
the Colibri iMX8X [2] on the Aster Carrier Board [1] in Listing 1. This is a board
employed by the ETH Systems Group for research and the tree was extracted
from a running Linux system on the board. It shows how CPUs and main

9

memory are usually represented. In the original Devicetree, there is a lot more
content with device specific information, but in the end all trivial in structure,
and I go into depth about the format in a dedicated section subsubsection 3.1.1.
In brief, there are nodes and properties in a hierarchical structure. Every node
can contain an unlimited amount of properties and child nodes.

1 /dts -v1/;

2

3 / {

4 model = "Toradex Colibri iMX8QXP/DX on Colibri Evaluation Board

V3";

5 #address -cells = <0x02 >;

6 #size -cells = <0x02 >;

7

8 cpus {

9 #address -cells = <0x02 >;

10 #size -cells = <0x00 >;

11

12 cpu@0 {

13 // identify the device as a physical cpu core

14 device_type = "cpu";

15 // value used by the OS to find a suitable driver

16 compatible = "arm ,cortex -a35";

17 // CPU identifier

18 reg = <0x00 0x00 >;

19 };

20

21 cpu@1 {

22 device_type = "cpu";

23 compatible = "arm ,cortex -a35";

24 reg = <0x00 0x01 >;

25 };

26

27 };

28

29 memory@80000000 {

30 // identify the device as a physical memory

31 device_type = "memory ";

32 // the memory addresses start at 0x80000000

33 // the memory size is 0x40000000 addresses

34 reg = <0x00 0x80000000 0x00 0x40000000 >;

35 };

36 };

Listing 1: Simplified Colibri Devicetree

3.1.1 Format

The Devicetree Specification v0.3 [3] defines some loose syntax without giving
concrete semantics. However the actual format parsed by the DTC is an ex-
tended version that I had to extract from the compiler parser code and from real
world examples in the Linux source tree. For reasons detailed in subsection 5.1

10

I decided to focus on the syntax parsed by the DTC. As a consequence that’s
what this section describes.

For simplified platforms the Devicetree structure is comparable to how hardware
is pieced together. But when applying this logic to more complex platforms the
analogy quickly falls apart. Nonetheless let’s imagine a simplified view of a
standard consumer PC. One can imagine the motherboard as a whole being the
root node. The CPUs placed onto it are represented as children of the root, as
is the main memory (RAM). The PCI bridge is right on the motherboard as
well and has some PCI devices or other bridges connected that are represented
as its children. Listing 2 shows such a very simplified structure.

1 /dts -v1/;

2

3 // This example is for visualization purposes

4 // "Real" device trees need a lot more properties

5

6 // motherboard

7 / {

8 #address -cells = <0x2 >;

9 #size -cells = <0x2 >;

10

11 // collection for cores

12 cpus {

13 // single core

14 cpu@0{

15 reg = <0x0 >;

16 };

17 };

18

19 // RAM , around 8GiB or memory starting at 0x10000000

20 memory@10000000 {

21 reg = <0x0 0x10000000 0x2 0x00000000 >;

22 };

23

24 // PCI Host bridge accessible at 0x0

25 pci@0x0 {

26 reg = <0x0 0x0 0x0 0x0fffffff >

27 }

28 };

Listing 2: Simplified view of a PC

In Appendix A there is a short description of the format using EBNF. Here I
continue with an informal description of what Devicetrees look like and some
accompanying examples to get the relevant basis for later concepts in this thesis.

A source file contains a list of statements. Every statement or definition ends
with a semicolon (’;’).The source file has to start with a Devicetree version
statement /dts-v1/. This can be followed by some /memreserve/ statements
that have to appear before the first root tree in the source file. They define
entries for the memory reservation table. Each tree definition is also a statement.

11

Devicetrees themselves are trees of named nodes with associated properties. In
this hierarchical structure there is a single root node named ’/’. Each node
encloses its contents in curly braces and can optionally be assigned some unique
labels to refer to it from other parts of the tree. The DTC allows multiple root
trees in Devicetree files that will be read top to bottom and merged according
to a process described in subsection 5.2. Furthermore so-called overwrites can
be specified. They are in structure very similar to root tree definitions but they
start with a reference to some node instead of a node name and will be merged
with the referenced node on compilation. To facilitate code reuse additional
Devicetree files can be included using the /include/ statement with a quoted
file name and are inserted as a whole at the location of the inclusion. The
example in Listing 3 shows what that might look like. This allows a tree to be
built sequentially where later definitions can add properties to already existing
nodes.

1 // file: main.dts

2 /dts -v1/;

3 /include/ "extra.dts"

4

5 / {

6 label1: node2 {

7 d = "not d in node 2";

8 };

9 };

10

11 // reference by label

12 &label1 {

13 new_property = "new prop";

14 };

15

16 // reference by path in the tree

17 &{/ node1} {

18 b = "not b in node 1";

19 };

20

21 // file: extra.dts

22 /dts -v1/;

23

24 / {

25 node1 {

26 a = "a";

27 b = "b";

28 };

29 node2 {

30 c = "c";

31 d = "d";

32 };

33 };

34

35 // Resulting tree

36 /dts -v1/;

37

38 / {

39 node1 {

12

40 a = "a";

41 b = "not b in node 1";

42 };

43

44 label1: node2 {

45 c = "c";

46 d = "not d in node 2";

47 new_property = "new prop";

48 };

49 };

Listing 3: Sequential Devicetree build

Devicetree properties have a name, some associated data and a set of unique
labels. The data is a possibly empty list of the following three data types:
string, byte array, cell array. The first two are self explanatory and the third
is similar to the byte array but each element has default size 32bits. The size
can be adapted to 8, 16, 32 or 64 bits with a prefix. The DT Specification v0.3
[3] also allows integers to be defined with arithmetic expressions in cell arrays.
There are no surprises hidden in these expressions, they provide the usual C
style options. Properties can reference a node in a cell array or as a string value
by using their path in the Devicetree or a label assigned to the node. In the first
case, the DTC turns it into a unique integer associated with the referenced node.
This value is also guaranteed to be put in the phandle property (and sometimes
the linux,phandle property for compatibility) of the referenced node. In the
second case, the reference is transformed into a string that represents the path
of the node in the tree where the nodes on the path are separated by a slash
(’/’). Listing 4 shows what that would look like.

1 // dt_ref.dts

2 /dts -v1/;

3

4 / {

5 // references a node by label

6 property1 = <&label1 >;

7 property2 = <&label2 >;

8 // references a node by path

9 property3 = <&{/node1/node2}>;

10 // references a node as a string

11 property4 = &label2;

12

13 label1: node1 {

14 label2: node2 {};

15 };

16 };

17

18

19 // result

20 /dts -v1/;

21

22 / {

23 property1 = <0x01 >;

24 property2 = <0x02 >;

13

25 property3 = <0x02 >;

26 property4 = "/node1/node2";

27

28 label1: node1 {

29 phandle = <0x01 >;

30 label2: node2 {

31 phandle = <0x02 >;

32 };

33 };

34 };

Listing 4: Node References

Nodes and properties can also be deleted with respective statements called
/delete-node/ and /delete-property/. These statements need to occur at
the same position in the tree as the original element was declared. Listing 5
shows an example. Should a node only be removed if there is no reference to it
in the tree, then it can be annotated with /omit-if-no-ref/.

1 // input tree 1

2 /dts -v1/;

3

4 / {

5 property1 = "a";

6 property2 = "b";

7

8 node1 {

9 };

10

11 node2 {

12 };

13 };

14

15 // input tree 2

16 /dts -v1/;

17

18 / {

19 /delete -property/ property1;

20 /delete -node/ node1;

21 };

22

23 // Merged Result

24 /dts -v1/;

25

26 / {

27 property2 = "b";

28

29 node2 {

30 };

31 };

Listing 5: Example for deletions

The DT specification [3] loosely defines some standard properties to allow for
uniform expression of commonly-used hardware properties. The compatible

14

property, for example, is used by the operating system to select a suitable driver
for some device. The others defined in the specification mainly describe memory
and interrupts which we will look at in depth in the coming sections. These
properties are only roughly specified and conformance is not enforced. Rather
developers are encouraged to use these properties in a way most useful to them.

3.1.2 Memory/Addressability

There are four standard properties mainly used for memory style addressability.
The meaning of these addresses can vary but they are generally used as a name
for some object like a memory location or a CPU thread identifier.

• #address-cells defines the number of cells required to express an ad-
dress, defaults to 2

• #size-cells describes the number of cells required to express the size of
an address range, defaults to 1

• The reg property specifies address blocks belonging to a node. Its data is
an alternating sequence of address and size specifiers. The number of cells
required for each specifier is defined by the two aforementioned properties
respectively.

• The domains of a node A and its parent can be joined by defining trans-
lations between the two domains utilizing the ranges property on node
A. This translation can be the identity translation by defining an empty
ranges property. In this way Devicetrees are able to specify multiple
disjoint memory domains as well as different views of the same memory
location. The property data is a sequence of tuples, each consisting of
a child-address, parent-address and range-size specifier. The number of
cells required to define the child-address and range-size are defined by the
#address-cells and #size-cells properties respectively on the node
on which the range property is located. The parent-address requires the
number of cells specified by the parent of the aforementioned node.

Every node in the tree represents an isolated naming context which resolves
only the addresses of its direct children and it is responsible for defining the
#address-cells and #size-cells properties for its domain. To make the
complicated reading of the reg and ranges properties more clear the Listing 6
contains some examples.

1 / {

2 #address -cells = <0x2 >;

3 #size -cells = <0x1 >;

4 node1 {

5

15

6 #address -cells = <0x3 >;

7 #size -cells = <0x2 >;

8

9 // cells values always taken from the direct parent

10 // address block at 0x1000 with size 0x2000

11 // address block at 0x1 00000000 with size 0x3000

12 reg = <0x0 0x1000 0x2000 0x1 0x0 0x3000 >;

13

14 // 0x5000 many child addresses starting

15 // at 0x1 00000000 00000000 are available

16 // in the parent domain starting at 0x2 00000000

17 ranges = <0x1 00000000 00000000 0x2 00000000 0x5000 >;

18

19 child1 {

20 // defines a single address block

21 // at 0x1 00000000 00000000 with size 0x2 00000000

22 reg = <0x1 0x0 0x0 0x2 0x0 >;

23 };

24 };

25 };

Listing 6: reg and ranges examples

3.1.3 Interrupts

This section is kept fairly short because interrupts did not make it into a backend
of the final compiler due to time constraints. Interrupts are defined outside of
the tree structure. This is achieved by the means of references to the interrupt-
parent(s) of a node. If an interrupt generating node does not specify a parent
it defaults to the parent node in the tree structure. There is also a way to
describe multi-child, multi-parent relationships contrary to memory addressing
where this is not possible.

• The #interrupt-cells property defines the number of cells required to
describe an interrupt specifier.

• interrupts is a cell array of of interrupt specifications each of which is
#interrupt-cells cells in length.

• interrupt-parent contains a reference to the interrupt parent of a node
which defaults to the parent in the tree.

• The Property interrupt-map defines a translation between interrupt spec-
ifiers similar to what ranges does for memory addresses.

• interrupts-extended can be used as an alternative to interrups to
define multiple interrupt parents because it allows specifying a parent per
interrupt specifier.

• interrupt-controller is an empty property marking a node as an in-
terrupt controller.

16

3.2 Sockeye

Sockeye [11] is a domain specific language (DSL) to specify an address transla-
tion network (ADN). It can be used to describe hardware features like memory,
interrupts or power management. Highly complex address resolution processes
can be modelled thanks to its support for full directed graphs without static
restrictions on cycles. There are two versions of Sockeye and in this work we
focus on Sockeye v2.

The language is based on the concept of nodes. Every node has a set of accepting
and a set of mapping addresses. If some address is in the accepting set the
node is able to answer queries itself. An address in the mapping set defines a
translation to another node. The accepting and mapping sets may overlap. A
prime example for such an overlap are caches. They accept the address if it is
a cache hit and map it to some underlying device like RAM otherwise.

Nodes must be combined into modules for reusability. Inputs and outputs of
a module can be defined to specify what can be accessed from other modules
by instantiating it. Modules describe specific viewpoints of the hardware. A
graph created in this language is called a decoding network and it specifies
the resolution of a name (here address) in a given context. Listing 7 shows a
standard example from the Sockeye compiler source code that illustrates what
a simple model could look like.

1 /*

2 * Example Module for illustration purposes

3 * Created by Lukas Humbel

4 */

5

6 module DRAM {

7 input memory (0 bits 40) GDDR0

8 GDDR0 accepts [(0 x000000000 to 0x0fedfffff)]

9 }

10

11 module SOCKET {

12 instance RAM of DRAM

13 RAM instantiates DRAM

14

15 memory (0 bits 40) SOCKET

16 SOCKET maps [

17 (0 x000000000 to 0x0fedfffff) to RAM.GDDR0 at (0 x000000000

to 0x0fedfffff)

18]

19 }

Listing 7: Simple Sockeye example

17

4 Semantics for Devicetrees

We are interested in semantics for Devicetrees. But as this chapter will show, it
is not trivial to know how to interpret the information contained in a tree. On
the contrary it is hardly possible to define a single semantic applicable for each
and every tree. In the interest of achieving usefulness rather than perfection we
analyze Devicetrees as they are found in the Linux and FreeBSD source trees.
Then we develop semantics for only a small subset of the properties, which will
be used in section 5 to generate a Sockeye memory address decoding net.

4.1 Devicetree Analysis

Devicetree’s biggest strength is flexibility. They provide developers with a direct
way to talk to their drivers, enabling them to pass any data desired through
unrestricted additional properties. Thanks to so very few restrictions on prop-
erty definitions they can be adapted to a lot of different use cases. It would
have arguably been harder to get such wide spread usage with a more restricted
model.

This freedom comes at a price though. The loss of generally applicable semantics
for the contents of the DT. To illustrate this, let’s have a look at the represen-
tation of memory structures. Without even considering complex configurations
that break the historical concept of memory as a single set of unique physical
addresses with a shared view by the whole platform, already several issues arise
when trying to understand the provided values.

For a reg field it’s not possible to know for sure what the integer values presented
are supposed to be because the endianness is not specified. Furthermore we
don’t even know if the values, if interpreted correctly, represent some kind of
memory address or anything different like a CPU thread ID or a chip select on
a bus. As a consequence, it is very hard to verify that an interpretation of the
value would be correct and dangerous to make non-trivial assumptions.

Furthermore, if we were aware that something represents memory, Devicetrees
do not specify who is an actor performing operations on addresses and who
isn’t. For example CPU cores are usually actors on the memory domain of the
root node but their nodes are not even contained in that domain. Finally there
are memory configurations that cannot be expressed at all using the standard
properties. A single node cannot be present in two partially or fully disjoint
parent domains at the same time. Although one could imagine workarounds with
out-of-tree references like with interrupts these would be nonstandard solutions.

The Linux documentation does contain so-called bindings where some additional
information on the usage of standard or custom properties is available. If they

18

are written in a specific format, they can even be used with the Devicetree
schema project [14] to check the source code for certain types of mistakes. But
to be completely sure about correct interpretation of values one should have a
look at the corresponding driver sources to see how they are used.

4.2 Useful Semantics

In the introduction to this section I already hinted at creating useful seman-
tics rather than ones that are applicable to all Devicetrees. As we will see in
subsection 5.3 and section 6 all considered DTs can be compiled without errors
this way. However this does not imply correctness of the results. Nonetheless
we show correctness for some example.

The Devicetree Specification does contain some descriptions for the memory
properties. But since they are not formal I had a look at several Devicetree
source files, most notably the one from the colibri-eval board, to create the
semantics described in the next few paragraphs.

This work defines semantics for memory properties exclusively. There is no way
one could possibly define semantics for all the properties that are in use, in par-
ticular not in a useful time frame, because most manufacturers can and do define
their own for special purposes. The properties from subsubsection 3.1.2 are re-
fined to provide the necessary clarity to be able to generate Sockeye memory
descriptions.

We describe the semantics in terms of Sockeye syntax. This allows a concise
description that has a well defined meaning without going overboard with ex-
planations. It is assumed that values are given in big endian byte order.

Each node of a Devicetree maps to exactly one Sockeye module. This allows
us to preserve all the viewpoints of different devices in the tree. Per Devicetree
Specification [3] every node defines its own separate memory domain that con-
tains the address blocks of its direct children. In other words the address blocks
in a reg field of a node are always names defined in the naming context of its
direct parent. We achieve this by creating a Sockeye node called LOCAL_DOMAIN

in each module, representing the corresponding node’s naming context. Fur-
thermore, a Sockeye node, called LOCAL, is added to every module. It accepts
the address blocks defined by the reg field of the corresponding Devicetree node.
To allow the respective parents to resolve these addresses they instantiate the
modules corresponding to their children and create identity maps to all address
blocks accepted or mapped (no maps there yet, they are added in the next step)
to the children’s LOCAL nodes. This way we are able to represent the separate
naming contexts and allow a parent to resolve addresses of its direct children.
Listing 8 shows an example Devicetree and the resulting Sockeye code created
with the semantics defined up to here. Each module has a comment to show with

19

which Devicetree node it is associated and empty Sockeye nodes were removed
for brevity.

1 // Devicetree

2 /dts -v1/;

3 / {

4 #address -cells = <0x1 >;

5 #size -cells = <0x1 >;

6

7 bus@0 {

8 #address -cells = <0x1 >;

9 #size -cells = <0x1 >;

10 reg = <0x0 0x1000 >;

11

12 child@0 {

13 reg = <0x0 0x1000 >;

14 };

15 };

16 };

17

18 // Sockeye

19 // DT Node name: / path: /

20 module ROOT {

21 // memory domain of the corresponding Devicetree node

22 memory (0x0 bits 32) LOCAL_domain

23

24 instance ROOT_BUS_0 of ROOT_BUS_0

25 ROOT_BUS_0 instantiates ROOT_BUS_0

26 LOCAL_domain maps [(0x0 to 0xfff) to ROOT_BUS_0.LOCAL at (0x0 to

0xfff)]

27 }

28

29 // DT Node name: bus@0 path: /bus@0

30 module ROOT_BUS_0 {

31 input memory (0x0 bits 32) LOCAL

32 LOCAL accepts [(0x0 to 0xfff)]

33

34 // memory domain of the corresponding Devicetree node

35 memory (0x0 bits 32) LOCAL_domain

36

37 instance ROOT_BUS_0_CHILD_0 of ROOT_BUS_0_CHILD_0

38 ROOT_BUS_0_CHILD_0 instantiates ROOT_BUS_0_CHILD_0

39 LOCAL_domain maps [(0x0 to 0xfff) to ROOT_BUS_0_CHILD_0.LOCAL at

(0x0 to 0xfff)]

40 }

41

42 // DT Node name: child@0 path: /bus@0/child@0

43 module ROOT_BUS_0_CHILD_0 {

44 input memory (0x0 bits 32) LOCAL

45 LOCAL accepts [(0x0 to 0xfff)]

46 }

Listing 8: Semantics Example 1

Devicetrees allow parent and child domains to be joined using the ranges prop-
erty. This is represented by maps between the LOCAL node and the LOCAL_DOMAIN

20

node of a module. Note that earlier we said maps defined on the LOCAL_DOMAIN

nodes are for accepting and mapping address blocks of the children. This allows
address translation to continue along a chain of nodes, giving a parent node
access to its grandchildren through the LOCAL node of its own children. If the
ranges property exists and is not empty then the translations can be directly
used as a Sockeye map. If it exists but is empty then it is defined as an identity
map from the LOCAL node to every address block in the LOCAL_DOMAIN node.
Listing 9 is very similar to Listing 8 with the addition of a ranges property on
the bus. The additional output generated is marked with comments.

1 // Devicetree

2 /dts -v1/;

3 / {

4 #address -cells = <0x1 >;

5 #size -cells = <0x1 >;

6

7 bus@0 {

8 #address -cells = <0x1 >;

9 #size -cells = <0x1 >;

10 reg = <0x0 0x1000 >;

11 ranges = <0x0 0x1000 0x1000 >;

12

13 child@0 {

14 reg = <0x0 0x1000 >;

15 };

16 };

17 };

18

19 // Sockeye

20 // DT Node name: / path: /

21 module ROOT {

22 // memory domain of the corresponding Devicetree node

23 memory (0x0 bits 32) LOCAL_domain

24

25 instance ROOT_BUS_0 of ROOT_BUS_0

26 ROOT_BUS_0 instantiates ROOT_BUS_0

27 LOCAL_domain maps [(0x0 to 0xfff) to ROOT_BUS_0.LOCAL at (0x0 to

0xfff)]

28 // ADDITIONAL OUTPUT:

29 LOCAL_domain maps [(0 x1000 to 0x1fff) to ROOT_BUS_0.LOCAL at

(0x1000 to 0x1fff)]

30 }

31

32 // DT Node name: bus@0 path: /bus@0

33 module ROOT_BUS_0 {

34 input memory (0x0 bits 32) LOCAL

35 LOCAL accepts [(0x0 to 0xfff)]

36 // ADDITIONAL OUTPUT:

37 LOCAL maps [(0 x1000 to 0x1fff) to LOCAL_domain at (0x0 to 0xfff)]

38

39 // memory domain of the corresponding Devicetree node

40 memory (0x0 bits 32) LOCAL_domain

41

42 instance ROOT_BUS_0_CHILD_0 of ROOT_BUS_0_CHILD_0

43 ROOT_BUS_0_CHILD_0 instantiates ROOT_BUS_0_CHILD_0

44 LOCAL_domain maps [(0x0 to 0xfff) to ROOT_BUS_0_CHILD_0.LOCAL at

21

(0x0 to 0xfff)]

45 }

46

47 // DT Node name: child@0 path: /bus@0/child@0

48 module ROOT_BUS_0_CHILD_0 {

49 input memory (0x0 bits 32) LOCAL

50 LOCAL accepts [(0x0 to 0xfff)]

51 }

Listing 9: Semantics Example 2

The direct mapping between Devicetree nodes and Sockeye modules could allow
us to later combine memory, interrupt and power decoding networks. By joining
the different types of networks into single modules per Devicetree node we can
preserve knowledge of which viewpoints of the system belong to the same device.
This separation by devices is in line with how developers need to think about
hardware when working with Devicetrees.

The attentive reader might have noticed that memreserves are not handled in
the semantics defined. This is because I was not able to identify a reliable, OS
independent interpretation and consequently no formalization using Sockeye.

4.3 Devicetrees vs Sockeye

As a formal DSL with a well defined syntax and semantic, Sockeye has the obvi-
ous advantage that interpretation of a description file is well-defined. However
these restrictions limit its expressivity. For example, it does not allow passing
of free format information to a driver and there is no inherent way of specifying
a relation from nodes to devices or drivers other than their node and mod-
ule name. This is in accordance with Sockeye’s design to solve addressability
modelling and not driver information passing.

As a consequence I decided not to propose extending Sockeye for transportation
of free form data. Instead I would suggest creating separate Prolog facts about a
device that represent the additional information present in a Devicetree. Using
matching by Sockeye node name, one could find the path in the tree and with
that query additional information about a device. This would allow free form
properties to be passed on.

Using the semantics from the previous subsection we know that a Devicetree
memory description can always be represented in Sockeye. This is due to the
very similar but more restricted abstract structure. As in Sockeye, the DT
memory representation allows nodes with a set of addresses and a set of address
translations between these nodes. The graph implied by a Devicetree has the
additional restriction that it has to be a tree. As a consequence, not all Sockeye
decoding nets can be translated into a Devicetree.

22

If one was interested in translating a Sockeye decoding net to a Devicetree,
one would have to define a different representation for memory where address
translations can not only happen in a parent and child relationship but instead
between arbitrary nodes. This would remove the tree restriction from the mem-
ory graph. The gain in expressivity would be paid for in complexity of the
representation.

23

5 Compiler

An important part of this thesis was the creation of a compiler that takes a De-
vicetree as an input and creates a corresponding Sockeye description as output.
This section provides an in-depth look at the inner workings and the design
decisions taken during the creation. Because of the issues explained in subsec-
tion 4.1 it is not possible to create a reliable memory model without additional
assumptions. Though an output could certainly be used for some testing on
new platforms where unsupervised correctness is not important and errors can
be fixed when needed.

In a first attempt I investigated creating a new backend for the existing DTC.
This would have saved the work of analyzing the precise DTC behaviour, imple-
menting a new parser and would have ensured compatible behaviour in current
usage scenarios of Devicetrees. There were two main issues with this approach.
Firstly, the parser performs some evaluations and transformations on the De-
vicetree. Secondly, it is harder to reason about correct behaviour of C code than
in a more formal language setting. Ideally the architecture would allow us to
exactly say what kind of transformations we assume. To be able to control the
input fully and to pave the way for more thorough analysis of this compiler in
future work, I decided to go with the alternative option presented in the thesis
proposal: Writing a new compiler in Haskell. It is well suited for verification
tasks and it allowed me to make a clean separation between ’dumb’ parsing,
building an internal representation, formalizing the contents of the tree and
generating code.

There are four main stages to the compiler:

• In the first stage, the parsing stage, we parse the file without interpreting
or modifying the actual contents. The goal is to get as much informa-
tion from the tree into an internal parser representation without losing
anything.

• Secondly, we build the internal representation. This requires merging
the multiple input trees. Interpretation is still kept to a minimum but
some contents are moved from outside of the tree structure into proper-
ties. Arithmetic expressions in cell arrays are also evaluated to reduce the
complexity of the AST. These are optimizations to make the formalization
process later on more concise.

• The third stage performs formalization of the tree. These are from an
abstract point of view just semantical interpretations of the Devicetree
contents. They take the information present in the tree and create com-
piler internal properties that have a well-defined meaning. Default inter-
pretations for memory and interrupt properties are provided as a starting
point.

24

• Finally there is the backend stage where the formal compiler properties
are used to generate code. Currently a single backend is implemented
for Sockeye. These outputs should not be assumed to be correct without
manual verification as without device specific formalization implementa-
tions they only represent default interpretations of the data given in the
Devicetree and have no guaranteed validity.

In principle this just automates parts of the process of manually assigning a
specific semantic to Devicetree properties and allows code generation from such
an interpretation specification in the form of formalization code in Haskell.

5.1 Parser

The Devicetree specification does not put very strict requirements on the format
of a Devicetree file. As the explicit goal of the thesis was to be able to parse all
Devicetree files in the Linux and FreeBSD source trees, I decided to design the
parser to allow for a super set of the syntax parsed by the DTC.

In contrast to the behaviour of the DTC parser, I perform neither interpre-
tations, evaluations nor transformations. These are tasks for the build and
formalization stage. Everything is transformed into an internal representation
called ParserAST as-is. The compiler runs under the assumption that the De-
vicetrees it receives are valid and that they do not contain any references to
nonexistent nodes. In that sense it is a ’dump’ parser. This allows important
decisions to be performed in a dedicated compiler stage.

Another difference worth mentioning is the handling of include statements. To
perform includes, the DTC, when happening upon a valid include statement,
will pause parsing of current file and parse the included file first before resuming.
Includes are allowed to recurse but not cycle. This behaviour can be emulated
using the c pre processor (CPP). That is useful because a lot of files in the Linux
source tree already use CPP features and it is unnecessary to re-implement the
include feature as valid includes in the DTC are almost equivalent to just pasting
the contents of the included file at the include statement location, which is what
the CPP is good at. The main difference is that the DTC is very picky about
the location of Devicetree version and memreserve statements inside the file.
The parser from this work can deal with these occurrences between root and
reference trees without any issues.

5.2 Build AST

The abstract syntax tree used in the compiler was supposed to be simple and
easy to work with. Unfortunately, this collides with the intention of providing

25

the formalization stage with all of the available data. I did not want to restrict
the power of the interpretations under any circumstance which is why I decided
to keep all the tedious labelling of properties and even single values in the AST.
This is a change from the first attempt at the internal AST where I removed
some of most likely obsolete information from the tree. Listing 10 shows what
the AST of a very simple Devicetree could look like. As you might notice,
there are a lot of places where a label can appear in a Devicetree. The object
Tree.Node is defined by Haskell Data.Tree and is used for representing the
actual tree structure. Node, on the other hand, is the actual Devicetree node.
Each such node has a list of properties that in return contain a list of data
sections that can be of the different types mentioned in the Devicetree format
section (3.1.1).

1 Tree.Node {

2 rootLabel = Labeled {

3 element = Node {

4 nodeName = "/",

5 nodeProperties = [

6 Labeled {

7 element = Property {

8 propertyName = "prop1",

9 propertyData = [

10 Labeled {

11 element = String "Hello",

12 labels = []

13 }

14],

15 postDataLabels = []

16 },

17 labels = []

18 }]},

19 labels = []

20 },

21 subForest = []

22 }

Listing 10: Example AST

To make the process of formalization as intuitive as possible, I kept the structure
of the AST very close to the one of the Devicetree itself. It is still a tree
of named nodes with associated properties. Everything that is outside of the
tree structure is represented with properties defined by the compiler. What
makes the structure rather verbose are all the possibilities to label parts of the
Devicetree structure. The whole AST definition in Haskell code is included in
Appendix B.

To build the AST we need to perform three tasks:

• merge root and overwrite trees in order

• remove nodes that are marked with omit-if-no-ref from the tree if they are

26

not referenced

• represent information provided in unconventional form in the generic struc-
ture

• evaluate expressions

The process of merging was modeled to behave like the DTC. The process starts
with an empty tree and iteratively merges the trees from the source top down,
one by one, into the result tree. Merging two nodes causes new properties to
be created and existing ones with the same name to be overwritten. Missing
child nodes are added and existing child nodes with the same name are merged
recursively with the same process. The set of labels on properties or nodes
is united upon merging. Node deletions and property deletions remove the
specified elements from the tree and clear their label set. Override nodes in the
input are handled almost the same. Only instead of starting the process at the
root of the current result tree, it starts at the referenced node.

In the DTC the ”omission if there is no reference” feature has interesting be-
haviours. Creating a node with the /omit-if-no-ref/ annotation, then delet-
ing it and finally creating a new node at the same path causes the new node
to be annotated with /omit-if-no-ref/ as well. If a marked node A refer-
ences another marked node B then only the first node in the chain, here A, is
removed. This is presumably because technically the node B was referenced at
some point. For compatibility reasons my compiler replicates these behaviours
as shown in Listing 11.

1 /dts -v1/;

2

3 / {

4 /omit -if -no-ref/

5 node1 {

6 };

7

8 /omit -if -no-ref/

9 node2 {

10 p = <&label3 >;

11 };

12

13 /omit -if -no-ref/

14 label3: node3 {

15 };

16 };

17

18 / {

19 /delete -node/ node1;

20 };

21

22 / {

23 node1 {

24 };

25 };

27

26

27 // resulting tree

28 /dts -v1/;

29

30 / {

31 label3: node3 {

32 };

33 };

Listing 11: Example for omission behaviour

There are statements outside of the tree definitions that define reserved memory
regions. They are currently ignored in the formalization and code generation,
but for completeness they are included in the AST nonetheless. To avoid cre-
ating special cases in the structure, they are turned into a property in the root
node named __meta__memreserve.

The DTC handles references occuring in cell arrays by assigning each referenced
node a unique 32-bit integer and placing it in the phandle property of the
referenced node. Then it replaces all references in cell arrays with the associated
phandle value. References that are not inside a cell array are turned into a
string that represents the node’s path in the tree with slashes between the node
names on the path. Because it is not possible to differentiate between integers
or strings that are references and ones that are not, I decided to keep references
as a separate type in the AST. phandle values are generated anyway to allow
a formalization that requires them to have access.

Expressions in cell-arrays are evaluated using unlimited integer arithmetic from
Haskell. The effort of making sure that the precise semantics of the evalua-
tions are equivalent to the DTC evaluations was not deemed worth the gained
precision in the given context.

5.3 Formalization

Devicetree properties do not have formal semantics for interpreting their values.
DT developers can choose their own for their devices. To allow code generation
from such a basis we need a special step, the formalization step, where inter-
pretation decisions are made and can be influenced depending on the tree in
question.

Backends as described in subsection 5.4 define a unique property name prefix
under which the well defined properties for that backend reside. They will later
be used for actual code generation. When implementing a formalization, it is
possible to use all the information provided by the original Devicetree to produce
the formal backend properties.

28

A formalization in the most basic sense is just a function that maps an AST to
a new AST. In practice, we use this to add properties with a specific prefix such
that the meaning of the new properties has a well defined semantic and they can
be differentiated from the original properties. This allows users who use non-
standard properties or properties in a non standard way to convert them into
a form that has a known meaning. It is recommended to use the compatible

property for matching to specific devices that need non-default semantics.

Because it is a lot of effort to implement the formalization process for all de-
vices in a tree and because the semantics established in section 4 work in a lot
of cases, I have implemented them as default formalization rules for memory.
They are applied last in the formalization setp and only to nodes that are not
marked as already memory formalized. This allows formalization writers to dy-
namically decide which nodes they want to handle. Listing 12 shows a simple
example formalization that adds a property named example with string data
Hello World to the root of the AST.

1 exampleFormalization :: Formalization

2 exampleFormalization = do

3 return $

4 rootNodeApply

5 (setProperty "example" [AST.noLabels (AST.String "Hello

World")]

6)

7 tree

Listing 12: Example formalization

5.4 Code Generation

Code Generation requires a solid data basis to be able to work reliably. The
previous compiler steps try to provide this as best as they can in a ”best-effort”
process. Backends like the one provided for Sockeye memory networks define
properties, whose names are prefixed by a unique string per backend, with
formal semantics. Based on these, they will generate their output.

There are five general properties already defined by the base compiler:

• __meta__name is a string that is the name of the node without any changes
applied

• __meta__unique_name a string that is unique for this node, starts with a
capital letter and consists only of capital letters A to Z, digits 0 to 9 and
underscore (’_’). This should allow it to be (part of) a valid identifier in
most languages. It can be used for example in Sockeye output to make
sure that a node has a unique name. The calculation can be expressed in
Haskell as:

29

1 nameFromPath :: AST.NodePath -> String

2 nameFromPath ["/"] = "ROOT"

3 nameFromPath path =

4 let repl c = if isLetter c || isDigit c then c else ’_’

5 in map (toUpper . repl) ("ROOT/" ++ intercalate "/" (tail

path))

Listing 13: unique name calculation

• __meta__path contains the path of this node in the tree. It is provided for
convenience and to make sure it is the same wherever the path is used. It
is calculated as "/" ++ intercalate "/" path where path is a Haskell
list of strings, the node names on the path in hierarchical order.

• __meta__memreserve represents the memreserve statements that are found
in Devicetrees outside of the normal tree structure.

• __meta__omit-if-no-ref is an empty property and is present on all nodes
that were annotated as such.

The rest of this section revolves around the Sockeye memory decoding network
backend. So, as to avoid reinventing the wheel, I use the same information
structure as defined in the Devicetree specification [11]. The prefix used for this
backend is __sock_v2_mem__.

• __sock_v2_mem__address-bits is a cell array with a single integer, the
number of bits required at most to represent the addresses in the address-
ing domain defined by the given node.

• __sock_v2_mem__reg is a list of cell arrays with two numbers each. The
first number in each array specifies the starting address of an address block
and the second number defines the size of the block. This is possible since
the Cells are represented with infinite integer variables in Haskell.

• __sock_v2_mem__ranges is also a list of cell arrays but with three numbers
each. Per array first is a child base address, the second the parent base
address and the third is the size of the translated range.

Based on these three properties, here the names without prefix are used, we
are able to build a memory tree and generate the desired code. The process
described here is performed bottom up in the AST. Every Devicetree node
gets assigned a module in the output. If it turns out to be an empty module
then it is not printed to reduce unnecessary output. If the given Devicetree
node has children with reg fields then it will generate a Sockeye node called
LOCAL_domain that represents its memory domain. It then instantiates all the
Sockeye modules of the child nodes and maps all the addresses that are available

30

in the child’s LOCAL node onto the local domain. The LOCAL node is then defined
to be an input to the module and it contains all the address blocks that the
Devicetree node defines itself in the reg field. Furthermore the local node gets
map definitions to the local domain that represent the translations to the parent
domain defined by the ranges property.

31

6 Evaluation

6.1 Parsing

The thesis proposal explicitly requires the resulting compiler to be able to parse
all Devicetree files in the Linux and FreeBSD source trees. To verify compliance
with the requirement, I have created a testing script called auto-test.sh that
handles the bulk of the work for compiling all Devicetrees in a directory. It
replaces DTC style includes with CPP includes and then runs the CPP on all
.dts files in all the target directories. For each tested directory it prints the
number of successful (’+’), failed due to the CPP (’?’), failed due to my compiler
(’-’) and total compilations. On the last line the total over all directories is
printed. This allows generating a good overview of the performance of the
compiler on the Devicetrees in the Linux and FreeBSD source trees.

6.1.1 Linux

Listing 14 shows the commands used for evaluation on the Linux source tree [6]
A clean version of the master branch (commit: 5925fa68fe82) was used.

1 # Add the arm device tree directory to the includes.

2 # It is required by a lot trees and not present otherwise.

3 # executed from the root directory of the Linux source tree

4 ln -s ../ arch/arm/boot/dts include/arm

5

6 # run the auto -test command with the include

7 # executed from the tests directory of my compiler source

8 # <lrd > is the Linux source tree root directory

9 ./auto -test.sh --target CP \

10 --include <lrd >/ include

11 <lrd >

Listing 14: Linux Evaluation

There are no CPP errors or Compiler errors reported for any of the Devicetrees
found.

6.1.2 FreeBSD

Very similar to the Linux tests, the Listing 15 shows the commands used in the
FreeBSD [8] test. Again I used a clean version of the master branch (commit:
7fbac817ea4).

1 # Add the arm dts directory to the includes.

2 # It is required by a lot trees and not present otherwise.

32

3 # executed from the root directory of the FreeBSD source tree

4 ln -s ../arm sys/gnu/dts/include/arm

5

6 # run the auto -test command with the include

7 # executed from the tests directory of my compiler source

8 # <fbrd > is the FreeBSD source tree root directory

9 ./auto -test.sh --target CP\

10 --include <fbrd >/ include \

11 --include <fbrd >/sys/gnu/dts/include/ \

12 --include <fbrd >/sys/dts/mips \

13 --include <fbrd >/sys/dts/arm \

14 <fbrd >

Listing 15: FreeBSD Evaluation

Several errors were recorded. Although one is shown in the compiler results all
of them have their source in the CPP. The compiler error is caused by several C
macros that should be evaluated by the CPP but are not. I was not able to find
the corresponding macro definitions anywhere in this version of the FreeBSD
source tree. All the CPP errors are caused by a missing Devicetree file that
should be included, called skeleton.dtsi. These are minor errors and do not
appear to show missing parsing capabilities of the presented compiler.

6.2 Code Generation

Thorough evaluation of the quality and correctness of the generated code is very
difficult due to the under-specification of Devicetrees discussed earlier in this
thesis, as well as there not being a better way to define correctness than over
the behaviour of the systems using the trees. To get a bit of an impression on
how we perform nonetheless we present an example usage and show that the
decoding net can be used to retrieve correct values.

We use the presented compiler to generated the Sockeye memory decoding net-
work of the colibri-eval board Devicetree. With the usual tool chain from the
Sockeye compiler project, we compile this to the Prolog language. Thanks to
the test framework already in place there, we are able to query the generated
network for addresses. The Prolog extract used for this is shown in Listing 16.
In this case we wanted to know the base address of the USDHC as viewed by
the root node of the system which corresponds to real CPU addresses in the
world of Devicetrees. The address we get is 0x5b010000 which is what we would
expect from looking at the corresponding Devicetree.

1 run_test :-

2 printf (" Testing colibri.pl\n",[]),

3 init ,

4 state_empty(S),

5 add_ROOT(S,[],_),

6 OutR = region ([" LOCAL", "ROOT_USDHC_5B010000 "], _, _),

33

7 accept(OutR),

8 InR = region ([" LOCAL_domain "], [block(InB ,InLimit)], _),

9 decodes_rev(OutR , _, InR),

10 printf ("%p --> %p\n", [InR , OutR]),

11 printf ("USDHC Base Address: 0x%x\n", [InB]).

Listing 16: Code generation test code

34

7 Conclusions

There is no doubt that hardware is getting harder. Furthermore, it is of no
surprise that there is a need for correct OS code to handle said hardware. Ab-
stractions and formal specifications of hardware allow us to generalize platform
management in a less error-prone and more verifiable way. In this work I showed
that it is possible to define some semantics for Devicetrees and use these existing
hardware descriptions to generate prototype platform specifications in Sockeye.
By performing manual validation and implementing specific formalization tasks
to assign more precise semantics to Devicetree contents, these prototypes can
be turned into actual formal specs.

Still a lot of manual work is required to verify and correct or at least test the
output. Furthermore, it is in no way a complete replacement for Sockeye speci-
fications manually-written from hardware specifications because Devicetrees do
not contain a complete view of the platform but just what is necessary for an
operating system and device drivers to handle a platform.

35

8 Future Work

8.1 Sockeye Interrupt Backend

Originally it was planned for the thesis to also include a backend that produces
an interrupt specification for the platform. The time did not suffice and so it was
not part of the final work. In future work it could be of interest to also provide
such a backend for a more complete Sockeye model of the platform. Interrupts
are more difficult because their structure allows for parent references. The
implied directed graph has to be created before interrupt specifier properties
can be interpreted because it is dependent on ancestor information. Only then
can the translations be propagated through the graph.

8.2 Language for Formalization

Currently the formalization process requires writing tedious code. Future work
could try to move formalization away from writing Haskell code and into a more
practical setting. A language could be defined that matches to the compatible
field of Devicetree nodes and describes the meaning of their properties. Al-
though it is questionable of how much general use such a language would be
as it would probably require special cases for every domain it describes - like
memory, interrupt or power.

8.3 Use Yaml bindings Linux source

The information provided in the Linux Devicetree bindings, which are like a
loose documentation for device specific properties, could be used to assist in
the development of formalization by providing an outline of properties that are
available and what structures they might or should follow.

8.4 Super DT

By introducing more restrictions on the format of Devicetree properties and
their semantics, a ”Super Devicetree” could be created. It could still be used
like the current Devicetrees because it is a subset of them but it could also
reliably be converted to Sockeye specifications. This would grant the benefits of
both the existing infrastructure and knowledge about Devicetrees but also the
formal semantics of Sockeye and its uses in scientific operating systems.

36

References

[1] Aster Carrier Board. url: https://developer.toradex.com/products/
aster-carrier-board. (last access: 09.09.2020).

[2] Colibri iMX8X. url: https://developer.toradex.com/products/

colibri-som-family/modules/colibri-imx8x. (last access: 09.09.2020).

[3] “Devicetree Specification”. Version Release v0.3. In: (2020). url: https:
//www.devicetree.org/.

[4] Devie Tree Compiler. url: https://git.kernel.org/pub/scm/utils/
dtc/dtc.git/. ((last access: 22.09.2020).

[5] Unified Extensible Firmware Interface (UEFI) Forum. “Advanced Config-
uration and Power Interface (ACPI) Specification”. Version Version 6.3.
In: (2019). url: https://uefi.org/sites/default/files/resources/
ACPI_6_3_final_Jan30.pdf.

[6] The Linux Foundation. Linux kernel source tree. url: https://github.
com/torvalds/linux. (last access: 18.09.2020, commit: 925fa68fe82).

[7] Grant Likely. Linux and the Device Tree. url: https://www.kernel.
org/doc/html/latest/devicetree/usage-model.html. (last access:
06.09.2020).

[8] The FreeBSD Project. FreeBSD. url: https://github.com/freebsd/
freebsd. (last access: 18.09.2020, commit: 7fbac817ea4).

[9] Lukas Humbel et. al. Reto Achermann. “Formalizing Memory Accesses
and Interrupts”. In: (2017).

[10] Geylani Kardas Sadik Arslan. “DSML4DT:A domain-specific modeling
language for device tree software”. In: (2019).

[11] Daniel Schwyn. “Hardware Configuration With Dynamically-Queried For-
mal Models”. In: (2017).

[12] Systems Group. url: https://systems.ethz.ch/. (last access: 06.09.2020).

[13] The Barrelfish OS. url: http://www.barrelfish.org/. (last access:
06.09.2020).

[14] Tooling for devicetree validation. url: https://github.com/devicetree-
org/dt-schema. (last access: 06.09.2020, commit: c38438e).

[15] U-Boot. url: https : / / www . denx . de / wiki / U - Boot. (last access:
06.09.2020).

37

https://developer.toradex.com/products/aster-carrier-board
https://developer.toradex.com/products/aster-carrier-board
https://developer.toradex.com/products/colibri-som-family/modules/colibri-imx8x
https://developer.toradex.com/products/colibri-som-family/modules/colibri-imx8x
https://www.devicetree.org/
https://www.devicetree.org/
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://github.com/freebsd/freebsd
https://github.com/freebsd/freebsd
https://systems.ethz.ch/
http://www.barrelfish.org/
https://github.com/devicetree-org/dt-schema
https://github.com/devicetree-org/dt-schema
https://www.denx.de/wiki/U-Boot

A Devicetree EBNF

Whitespaces, trivial definitions and includes were left out to make the descrip-
tion more readable.

1 device_tree_file ::= ’/dts -v1/’ ’;’ memreserve* root_node (

root_node | ref_node)*

2

3 memreserve ::= ’/memreserve/’ (hex | int) (hex | int) ’;’

4

5 root_node ::= ’/’ node_definition

6

7 ref_node ::= label* noderef node_definition

8

9 node_definition ::= ’{’ property* child_node* ’}’ ’;’

10

11 child_node ::= label* ’/omit -if-no -ref/’* (’/delete -node/’

node_name ’;’ | node_name node_definition)

12

13 noderef ::= ’&’ label | ’&{’ nodepath ’}’

14

15 nodepath ::= ’/’ [node_name (’/’ node_name)* [’/’]]

16

17 property ::= label* ([’/delete -property/’] property_name |

property_name ’=’ property_data) ’;’

18

19 property_data ::= data_section (’,’ data_section)*

20

21 data_section ::= string | noderef | byte_array | cell_array

22

23 byte_array ::= ’[’ (digit digit)* ’]’

24

25 cell_arary ::= [/bits/ (8 | 16 | 32 | 64)] ’<’ cell* ’>’

26

27 cell ::= noderef | (expression) | int | hex | char

28

29 hex ::= ’0x’ hex_digit+

30

31 label ::= string ’:’

32

33 expression ::= an integer expression

Listing 17: Devicetree EBNF

38

B Internal AST

1 type DeviceTree = Tree.Tree LNode

2

3 type Label = String

4 data Labeled a = Labeled

5 { element :: a,

6 labels :: [Label]

7 }

8

9 type LNode = Labeled Node

10 data Node = Node

11 { nodeName :: String ,

12 nodeProperties :: [LProperty]

13 }

14

15 type LProperty = Labeled Property

16 data Property = Property

17 { propertyName :: String ,

18 propertyData :: PropertyData ,

19 postDataLabels :: [Label]

20 }

21

22 type PropertyData = [Labeled DataSection]

23 type LDataSection = Labeled DataSection

24 data DataSection

25 = CellArray CellSize [Labeled Cell]

26 | ByteArray [Labeled Word8]

27 | String String

28 | DataSectionRef Reference

29

30 data CellSize = B8 | B16 | B32 | B64 | BInternal

31

32 data Cell = Int Integer | CellRef Reference

33

34 data Reference

35 = LabelReference Label

36 | PathReference NodePath

37

38 type NodePath = [String]

Listing 18: Compiler AST

39

	Introduction
	Related Work
	Background
	Devicetrees (DT)
	Format
	Memory/Addressability
	Interrupts

	Sockeye

	Semantics for Devicetrees
	Devicetree Analysis
	Useful Semantics
	Devicetrees vs Sockeye

	Compiler
	Parser
	Build AST
	Formalization
	Code Generation

	Evaluation
	Parsing
	Linux
	FreeBSD

	Code Generation

	Conclusions
	Future Work
	Sockeye Interrupt Backend
	Language for Formalization
	Use Yaml bindings Linux source
	Super DT

	Devicetree EBNF
	Internal AST

