
Bachelor’s Thesis Nr. 291b

Systems Group, Department of Computer Science, ETH Zurich

Modeling the I2C Bus

by

Jan Schär

Supervised by

Prof. Timothy Roscoe

Lukas Humbel

David Cock

March–September 2020





1 Abstract

I2C (Inter-Integrated Circuit) is a standard bus protocol which can for example
connect sensors or voltage controllers to a processor. It is commonly used in
computers to support critical functionality, hence it is essential that it works
correctly. However, current implementations in devices relatively often violate
the specification, and host side hardware interfaces may have limitations that
prohibit even compliant operations. With a formally verified implementation of
I2C, these problems could be avoided.

In this work, I present a model implementation of both sides of the bus. The
implementation is written in Haskell and executable, and consists of multiple
layers. Ultimately, the goal is to enable formal verification of this implementa-
tion. But before attempting this, it should be thoroughly tested and evaluated
to ensure that it is useful and works in practice, and is likely to be correct.

An end-to-end correctness property for the model has been formulated as
a random test using the QuickCheck Haskell library, which is already a strong
hint that it holds. Formal verification of the property is left to future work.

The model implementation was connected through GPIO (general purpose
input output) pins to a physical memory IC, and compared with a software
model of the memory IC through random testing. This shows that the model
works in practice and is compatible with the hardware implementation of the
protocol in the IC.

I also compared the interfaces of the model to the I2C API of the Linux
kernel, and to the interface of a hardware implementation of the host side. This
helps to ensure that the model is practical and not too restrictive.

Additionally, different examples of non-compliant devices were studied.
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3 Introduction

I2C (Inter-Integrated Circuit) [1] is a standard bus for communication between
integrated circuits. Devices on the bus are either so-called ‘masters’ or ‘slaves’.
A slave device could be e.g. a memory chip, a sensor or a voltage regulator. The
master can issue commands to the slaves to read or write data, it could e.g. be
software running on a CPU. I2C buses are ubiquitous in today’s computers, and
often perform critical functions like power management (e.g. controlling and
monitoring voltage regulators). Hence, it is important that these buses operate
correctly.

However, existing hardware implementations in slave devices relatively often
have various bugs or violations of the specification, which leads to incompatibil-
ity. To allow communication with such devices, some master implementations
have multiple flags to enable non-compliant behavior. In addition, hardware
master implementations can have restrictions which make certain compliant op-
erations impossible. The result is that only some combinations of slave devices
and hardware master interfaces are compatible.

Previous approaches to ensure correctness of I2C implementations are based
on testing. This is certainly useful for catching bugs. However, as a famous
quote by Edsger W. Dijkstra says, “Program testing can be used to show the
presence of bugs, but never to show their absence!” Hence, in the last decades,
there have been efforts to create formally verified implementations of various
parts of computer systems. Some examples are the VAMP (Verified Architecture
Microprocessor) [21], the CompCert compiler [22] and the seL4 microkernel [23].
This provides strong guarantees that these systems work correctly.

With an end-to-end formally verified implementation of I2C, the problems
mentioned above could be avoided. This is especially important since hardware
cannot simply be patched like software, it needs to be correct from the beginning.

Having such a model implementation will also allow proofs of bigger subsys-
tems. We may want to limit the rights of device drivers, such that they can only
access a subset of slave devices on the bus, or even just certain functionality
of a device. A right is defined by what is allowed to happen on a slave device,
but is implemented by restricting the transactions that the driver can execute.
The formal model allows us to relate the transactions to what happens on the
device, which allows to prove that the implementation of the right is correct
(i.e. any allowed transaction does not violate the definition of the right).

Problem statement The goal of this work is the creation of a model I2C
implementation. It should be amenable to formal analysis, which means that it
allows correctness properties to be stated, and that it should be relatively easy
to prove these properties in a proof assistant. Ultimately, we want to be able
to do an end-to-end formal verification.

At the same time, the model implementation should conform to the I2C
specification. The specification is written in English, not in a formal language,
thus adherence of the model to the specification cannot be formally proved.
Instead, this must be ensured by carefully reading the specification, and by
testing or proving compatibility with existing implementations. Consequently,
this compatibility is also a goal of the model.

To ensure that the model is useful, the interface that it exposes to device
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drivers should provide sufficient flexibility.
It should also be possible to express other APIs (such as the I2C API of

Linux) using the model.

Thesis outline In this work, I present a model implementation of an I2C
master and slave interface, written in Haskell (section 6). The language choice
means that the model is executable, but also relatively easy to reason about in
proof assistants. The model is split into multiple layers, which makes it possible
to reason at different levels of abstraction, and allows proofs to be built layer
by layer.

In section 7, I analyze the I2C master API used in the Linux kernel, and
compare it to the model implementation. This allows us to see if the high level
interface of the model is flexible enough in practice.

I look at several examples of non-compliant devices (section 8), and describe
how they violate the specification. I discuss different approaches how masters
can deal with this problem.

I compare the model interface to the interface of a hardware master interface
(section 9). This allows us to find potential problems and limitations in both.

The model allows interesting properties to be defined. Two such properties
were written in the form of QuickCheck tests (section 10). While actual proofs
of the properties are left to future work, this already gives a strong hint that they
are correct, which is useful to do before attempting to build a formal proof. Also,
a significant part of the challenge in formal verification is to formally specify
what it means to be ‘correct’, in other words how these correctness properties
should be formulated.

One can define a high level abstraction of how the bus connects masters and
slaves, and then state as a property that the complete protocol stack behaves
the same as the much simpler abstraction from the the point of view of devices
and device drivers (see section 10.2). In other words, this property means that
the implementation works correctly (for a single master and slave) when one
views the high level abstraction as a specification of how it should work.

If one then additionally models the device itself and the device driver, the
I2C bus which connects them could be replaced by the abstraction mentioned
above, thus enabling proofs of bigger subsystems.

Finally, I present a model implementation of an EEPROM (Electrically
Erasable Programmable Read-Only Memory), which has been checked through
random testing against an actual EEPROM connected to the master side of
the Haskell model via GPIOs (section 11). This shows that the model actually
works in practice and is compatible with existing implementations.
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4 Related work

In [18], the UVM (Universal Verification Methodology) methodology is applied
to verify an existing I2C master core from Opencores. It uses a testing approach:
Up to three random bytes are written to one of three slaves, the slave stores
them. Then, the bytes are read back from the slave and compared with the
original bytes. During the testing, coverage information is collected.

The work has a similar goal to my work, which is to ensure correctness of
an I2C implementation. However, the approach is different. The UVM work
only covers the hardware part of the master side, while my work also covers the
slave side and the high level software interface. The ultimate goal of my work is
to enable formal correctness proofs; random testing, while still valuable, cannot
guarantee correctness.

In the memory protection model proposed by Achermann et al. [19], an
EEPROM connected through I2C could be understood as an additional address
space. Since the EEPROM is accessed via I2C transactions, a model of the
behavior of the bus is necessary to ensure correctness. Such a model is provided
by my work.
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5 Background

This section provides a short summary of the I2C, SMBus and PMbus specifi-
cations, and some discussion. It should be enough to understand the rest of my
thesis. While the model itself only covers I2C, and SMBus and PMBus would
be implemented on top, it is still useful to know about how the later two use
I2C and what features they require from it.

5.1 I2C bus

I2C is a standard bus protocol for communication between ICs. The specification
[1] was first released in 1982 by Philips Semiconductors, and it is now a de facto
standard used by many companies. The bus is used in many electronic devices,
e.g. computers, and also sometimes for communication between devices such
as in HDMI (where it is used e.g. for reading out the resolution or changing
brightness of a monitor) [24]. The bus is relatively low speed and mainly used for
configuration. What follows is a short summary of the parts of the specification
which are relevant to my thesis. Nearly everything in this section can be directly
derived from the specification [1], for better readability I did not put a reference
after each sentence.

The bus has two wires, clock (SCL) and data (SDA), which are pulled up
to the supply voltage. ICs may only drive the lines low, not high.1 Devices
participating in the bus are either masters or slaves, there can be multiple of
both on the same bus. But there can also be intermediary devices which connect
different bus segments, like bus buffers or multiplexers. Each slave has a seven-
bit address (or ten-bit, see below), which should be unique.2 Communication is
always started by a master talking to a slave, identified by its address.

If SDA transitions from high to low while SCL is high, this is a START
condition. If SDA transitions from low to high while SCL is high, it is a STOP
condition. If SDA stays stable during a complete high period of SCL, a bit is
transmitted, 1 if SDA is high, 0 otherwise.

START and STOP conditions and the clock signal are generated by a master.
Slaves can only transmit a 0 bit by driving SDA low, transmit a 1 bit by doing
nothing, and perform clock stretching. Clock stretching means to drive SCL low
during the clock low period, which prevents prevents the clock from rising and
thus blocks the bus. It is necessary if the slave needs more time before it can
receive or transmit further data.

Communication happens in transactions, which contain one or more mes-
sages.3 Figure 1 shows a complete example transaction. Each message begins
with a START condition, and the transaction ends with a STOP condition. Af-
ter each START, the master transmits a byte containing the 7-bit slave address
and the read/write bit for this message. An acknowledge bit follows; if a slave
is present at the specified address, it will transmit a 0 bit (ACK), otherwise the
master will see a 1 bit (NACK). (Some slaves will not send an ACK if they are

1Under some conditions masters are allowed to drive SCL high. Also, this is not true for
UFm mode, which I do not cover here.

2An exception is mentioned in [1, p. 14, note 6].
3This terminology is from the I2C specification [1], but it is not clearly defined there, and

often ‘transfer’ is used as a general term instead. Other works may use different terminology,
e.g. Linux uses ‘transfer’/‘xfer’ instead of ‘transaction’.
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Figure 1: This figure shows an example I2C transaction. The SDA:M and
SDA:S signals show the contributions of master and slave respectively to the
SDA signal. The transfer of addresses (7 bits) and bytes (8 bits) have been
abbreviated. Rd/Wr stands for Read/Write. The transaction has two messages,
first one byte is written, then two bytes are read.

SCL

SDA

SDA:M

SDA:S

START Address: 10..... Wr ACK Byte ACK START Addr Rd ACK Byte ACK Byte NACKSTOP

Write message Read message

Transaction

busy.) A message will not continue after a NACK. Next, the data bytes of the
message follow.

If the message is a read (read bit set), the slave will transmit a sequence of
bytes, which the master receives. After each byte, the master sends an ACK bit
if the slave should continue sending data, else a NACK.

For write messages, the master transmits zero or more bytes, and the slave
will send an ACK after each byte if it is able to process it.

When the bus is free, both lines (SDA and SCL) are high. During a transac-
tion, the bus is busy, and other masters may not start a transaction. However,
it is possible that multiple masters begin communicating at the same time. As
soon as a device sees a 0 bit on the bus when it intended to transmit a 1 bit, it
has detected arbitration loss and will stop transmitting. A master may retry the
transaction in this case (after the current one is finished). The other devices will
just continue with the ongoing transaction and not even notice that arbitration
happened. It can also happen that there is an undefined condition [1, p. 12]. It
occurs when a START and a STOP, a START and a bit, or a STOP and a bit
are generated by different masters simultaneously.

The I2C specification defines some special, reserved addresses [1, p. 17]:
The START byte is a read message at address 0, which will be NACKed.

The actual transaction follows after that. It can be used to allow longer polling
intervals in bit-banging software slaves.

There are High-Speed (Hs) Mode master codes. In Hs mode, the master
drives SCL both high and low to achieve a higher clock frequency; if multiple
masters were active simultaneously, it would cause short circuits. Thus, each
master first transmits its unique master code at a lower speed before entering
Hs mode, forcing arbitration to happen early.

Four addresses are reserved for ten-bit addressing. The remaining 8 bits are
sent by the master in the first byte of a write message.

Other reserved addresses include general call and device ID.
It may happen that the SDA line becomes stuck low, e.g. if a slave misses a

clock pulse due to noise. In this case a master may send up to nine clock pulses,
until SDA goes high (this operation is called bus clear). If this does not help,
or SCL is stuck low, the devices on the bus need to be reset.

The specification defines 5 different data rates: Standard mode (Sm), Fast-
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mode (Fm), Fast-mode plus (Fm+), High-speed mode (Hs) and Ultra Fast-mode
(UFm). Hs and UFm change the way the bus operates (Hs mode master codes
were already mentioned), for this reason I do not handle these two modes in my
work.

5.1.1 Observations

Read messages Note that for read messages, the slave has no way to tell the
master that all bytes have been read; if it just stops transmitting, the master
will receive dummy 0xff bytes. Also, the master has to read at least one byte in
each read message; if it tried to read zero bytes, the following START or STOP
condition could get overridden by a 0 bit transmitted by the slave.

Undefined conditions Assuming that we have a single master on the bus,
all devices conform to the specification and there are no transmission errors (e.g.
due to noise), there should be no arbitration losses or undefined conditions, i.e.
transactions always succeed. In section 10.1, this is stated as a QuickCheck
property for my model. However, if we have multiple masters, we need to be
careful about undefined conditions. As the name indicates, the specification
does not define what will happen if they occur, thus we should make sure they
do not happen. They can occur in two situations: In the first, one master
executes a transaction with messages x1, . . . , xn and another master simultane-
ously executes a transaction x1, . . . , xn, y1, . . . , ym (n,m ≥ 1), i.e. the first list
of messages is a strict prefix of the second list of messages. Here, a START and
STOP condition occur simultaneously. (Remember that a START is sent before
each message, and a STOP at the end of a transaction.) In the second case,
the two message lists are x1, . . . , xn, w, y1, . . . , ym and x1, . . . , xn, w

′, z1, . . . , zk
(n,m, k ≥ 0), where message w and w′ have the same address and are both
writes, and the contents of w is a strict prefix of w′. Here, a bit occurs simul-
taneously with a START or a STOP condition.

One way to prevent undefined conditions is the use of master codes like in
Hs mode, where every master has a unique address (the master code) which is
not assigned to a slave, and an empty message with this address is prepended to
every transaction. This scheme forces arbitration to happen during transmission
of the master code, such that only one master wins, and we are again in the
single master case. (Unless Hs mode is actually used, the Hs mode master
codes should not be used for this, since they additionally signal to slaves that
transmission speed will change.)

5.2 SMBus

SMBus (System Management Bus) is a protocol that builds on top of I2C, spec-
ified in [2]. It defines a fixed set of command formats, which helps standardize
the interface of different devices, and allows to have a common higher level API
than just reading and writing bytes.

SMBus has a slightly different electrical specification and stricter timing re-
quirements than I2C, but it is usually interoperable (the differences are detailed
in [2, Appendix B]).

The simplest command in SMBus is Quick Command, which is just an empty
read or write (i.e. the read bit contains the single bit of data which is trans-
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ferred). The zero-length reads used here are problematic (if they are sent to a
slave which is not a Quick Command slave, an undefined condition can occur,
thus they are disallowed in the high level master part of my model); but I assume
it should not be a problem to read one dummy byte. Most commands include a
command byte, which can distinguish different commands. For variable length
reads or writes, a length byte is prepended to the data (thus it can be at most
255 bytes long). SMBus has an optional Packet Error Checking (PEC) feature,
which is a CRC-8 byte appended at the end.

There can be a host, which is a slave with a special reserved address. It
accepts SMBus Host Notify commands, where any device which supports this
protocol can become a master to notify the host. Alternatively, devices can
assert the optional SMBALERT# line. Then, the host, operating as a master,
reads a byte from the Alert Response Address, to obtain the slave address of
the device which caused the alert. Since multiple slaves could raise an alert at
the same time, arbitration loss can also happen in slaves when using SMBus.

Additional features include the Address Resolution Protocol.

5.3 PMBus

PMBus [3] is a protocol for power management. It is built on top of an extended
version of SMBus. The extensions to SMBus are the Group Command Protocol
(multiple write commands to different devices in one big transaction, all are
executed simultaneously at the STOP), and the Extended Command (which is
used to obtain a second set of 256 command codes). PMBus is quite complex,
it defines different data formats for temperatures/voltages/currents, defines the
meaning of many commands and parameters/registers, and has extensive fault
handling support.
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Figure 2: An overview of the components of the model and the interfaces between
them.

timing/electrical

sMasterToDevice

bMasterToSMaster
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High level master
implementation

Device
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HMaster

timing/electrical
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bSlaveToSSlave

hSlaveToBSlave

High level slave
implementation

Device

SSlave

BSlave

HSlave

SCL
SDA

V+

6 Modeling the I2C bus

In this section, I describe and discuss a model of the I2C bus. The model is
implemented in Haskell and is runnable; there are sample slave and master
implementations of an SMBus quick device and an EEPROM.

The model has three layers for both masters and slaves: The symbol layer,
the byte layer and the high level layer. Note that the layers are not the
same for masters and slaves, since only masters generate the clock signal and
START/STOP signals.

Figure 2 shows an overview, the individual components will we explained in
the following sections.

6.1 Timing/electrical layer

The timing/electrical layer is the interface between the model and the actual
wires of the I2C bus. It is the same for both slaves and masters. This layer
has to sample the state of the two wires (clock (SCL) and data (SDA)) at the
right interval, and report it to the layer above, which is given as a Device. The
Device then performs its functions and returns the next state to which the wires
should be driven:

1 data BusState = BusState Bool Bool

2 type Device = DeviceState -> BusState -> (DeviceState ,

BusState)

(DeviceState contains the internal state of the Device.)
The timing/electrical layer abstracts over the analog behavior of the wires,

which in the real world do not transition from one state to the other instantly.
It is also responsible for ensuring that timing specifications are met, which are
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defined in [1, p. 48-50]). For example, at any rising edge of SCL, it has to ensure
that SDA is driven to its new value first, and SCL released only after the set-up
time tSU ;DAT . This way, the layer also abstracts over the timing details, such
that the layers above can operate in discrete time steps.

I created an implementation of this layer on top of a GPIO API (see section
11). Since it is not possible to guarantee a high enough sampling rate with the
Haskell implementation, it does not support other masters attached to the bus
externally. This is not an issue if only slaves are attached to the GPIOs, since
the master generates the clock.

6.2 Symbol layer

Moving up one level of abstraction, we have the symbol layer. There are four
possible symbols: 0 bit, 1 bit, START and STOP. An additional idle symbol
marks the absence of a symbol:

1 data BusSymbol = SymIdle | SymStart | SymStop | SymBit Bool

The master symbol layer is implemented in sMasterToDevice, its type is:

1 type SMaster = SMasterState -> BusSymbol -> (SMasterState ,

BusSymbol)

2 sMasterToDevice :: SMaster -> Device

The layer parses the symbol which appears on the bus lines:

SCL
SDA

START STOP bit 0 bit 1

If one of these symbols is detected, the corresponding BusSymbol is given
to the SMaster. If and only if the last symbol was STOP and both lines are
high, the bus is idle and SymIdle is given. In any other case, the SMaster is
not called.

The SMaster then returns the next symbol which should be generated on
the bus.

There is some design freedom here, since the state of the SDA line can be
anything during SCL low periods. The easiest thing to do is to just let SDA
go high. One could argue that this uses less energy, since no current is flowing
through the SDA pull-up resistor. On the other hand, the frequency at which
SDA toggles is twice as high compared to other approaches, which makes it
more prone to noise and interference problems. The alternative is to keep the
SDA line at the state of the previous or next SCL high period. Using the
previous state is still relatively simple. But for the next state, obviously we
cannot look into the future, so we would have to generate the symbol to be
given to the SMaster already before SCL goes low (which then gives us the next
symbol to be generated). This complicates the design of the symbol parser. The
advantage is that this aligns nicely with the non-zero setup time and zero hold
time as specified in [1, p. 48].

There are certain rules that the SMaster has to follow, otherwise spurious
symbols appear on the bus: If SymStart is followed by SymStart or SymIdle,
an additional STOP appears. If SymStop or SymIdle is followed by SymStop,
an additional START appears. If one or more SymIdle is sent between two
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Figure 3: State machine diagram of the symbol reader. The symbol reader de-
cides the next state and output value based on the combination of previous and
current SCL,SDA values.

inactivestart active

1,*;0,* → Nothing

1,1;1,0 → Just SymStart
1,0;1,1 → Just SymStop
1,1;1,1 → Just SymIdle

* → Nothing

1,1;1,0 → Just SymStart
1,0;1,1 → Just SymStop

1,bit;0,* → Just (SymBit bit)
* → Nothing

SymBits, an additional bit appears. The reason why this happens should be
obvious: E.g. for the case of two START conditions, we have two transitions of
SDA from high to low. This is only possible if there is a transition from low
to high in-between, and that extra transition is detected as a STOP condition.
In theory, it would be possible to always return SCL to low after each symbol,
which would allow arbitrary sequences of all four symbols to be transmitted.
However, this would not be I2C anymore, since there, SCL must be high during
idle periods.

The slave symbol layer has the following type:

1 type SSlave = SSlaveState -> BusSymbol -> (SSlaveState ,

Bool)

2 sSlaveToDevice :: SSlave -> Device

The symbol parsing side works the same as with the master. However, the
transmitting side is much simpler, since the only thing a slave can do is turn
the next 1 bit into a 0 bit by pulling SDA low. This is controlled by the Bool

returned by the SSlave. When the slave is not transmitting, the value must be
True.

I2C slaves additionally have the ability to perform clock stretching when
they need more time before processing further bytes. The generation of clock
stretching is not yet implemented in the model, but it accepts clock stretching
correctly.

6.2.1 Implementation

Both the master and slave implementation use a common symbol reader func-
tion, which is depicted in figure 3:

1 data SymbolReaderState = SymbolReaderState Bool BusState

2 readSymbol :: SymbolReaderState -> BusState ->

(SymbolReaderState , Maybe BusSymbol)

sSlaveToDevice simply calls the symbol reader, and sends it to the upper
layer if there is a symbol. The upper layer then returns the SDA value. If there
is no symbol, the last SDA value is used.
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Figure 4: State machine diagram of sMasterToDevice. When the symbol reader
sees a symbol, it is sent to the higher level, which returns the next symbol. Based
on this, the next state is chosen. On the state transitions, the SCL,SDA value
received from the lower level is on the left side of the →, and the returned value
on the right side.

TransmitIdle start

StartWait

StopWait

BitWait bitBitPrepare bit

next symbol

* → 1,1

1,* → 0,bit 0,* → 1,bit

* → 1,1

* → 1,0

0,* → 1,bit

1,* → 0,1

1,1 → 1,0

1,0 → 1,1

SymIdle

SymBit bit

SymStart

SymStop

sMasterToDevice is more complex, since it has to be able to generate any
bus symbol. It is displayed in figure 4. Each bus symbol is represented by
a sequence of bus states, so the state machine generates these bus states, each
time waiting until the desired bus state appears until proceeding to the next bus
state. The symbol reader runs in parallel, and whenever it sees a bus symbol,
it is sent to the higher level, which returns the next symbol to be generated.

6.3 Byte layer

In I2C, bits always appear in groups of 8 (i.e. a byte) sent by the same device,
followed by an acknowledge bit from the receiving side. The byte layer captures
this aspect, by only allowing sending and receiving of bytes.

For the master, the interface is:

1 data BMasterAction = BActStart | BActStop | BActWrite Word8

| BActRead | BActIdle

2 data BMasterResult = BResOk | BResNack | BResReadResult

Word8 | BResArbitrationLost | BResUndefinedCondition

3 type BMaster = BMasterState -> BMasterResult ->

(BMasterState , BMasterAction)

4 bMasterToSMaster :: BMaster -> SMaster

In each step, the BMaster gets the result of its previous action, and then
returns the next action to be performed.

The byte layer detects arbitration losses (when 1 bit was sent but 0 bit re-
ceived) and undefined conditions (any other unexpected case), in which case the
result will be BResArbitrationLost or BResUndefinedCondition respectively.
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Note that it is not always possible to detect undefined conditions, see section
5.1.1 for a discussion. The byte layer also keeps track of whether the bus is
busy, and if so does not call the BMaster.

The following table shows an overview of possible results:

Action Possible results
BActStart BResOk, BResUndefinedCondition
BActStop BResOk, BResUndefinedCondition
BActWrite BResOk, BResNack, BResArbitrationLost,

BResUndefinedCondition

BActRead BResReadResult, BResUndefinedCondition
BActIdle BResOk

There is a special case where any action directly after a BActRead may
result in BResArbitrationLost or BResUndefinedCondition. This is because
the byte layer first has to ask the BMaster whether more bytes should be read,
before it can transmit the acknowledge bit, and that can have the above results.

The byte level master still has to follow the same sequencing rules as the
symbol level master (with SymBit replaced by BActRead and BActWrite).

The slave byte layer looks as follows:

1 data BSlaveEvent = BEvStart | BEvStop | BEvReceive Word8 |

BEvAck

2 data BSlaveReaction = BReactIdle | BReactTransmit Word8 |

BReactReceive

3 type BSlave = BSlaveState -> BSlaveEvent -> (BSlaveState ,

BSlaveReaction)

4 bSlaveToSSlave :: BSlave -> SSlave

While the master gets back results for its actions, the slave receives events
and then returns its reaction to the event.

There are three possible reactions: transmitting a byte, receiving a byte,
and no reaction (BReactIdle). In the last case, the BSlave does not receive
further events until the next START or STOP, and for BEvReceive the master
will receive a NACK. BEvAck is emitted when a byte was transmitted, and the
master acknowledged it.

When transmitting data, bSlaveToSSlave will detect arbitration loss and
stop transmitting. This is needed for functionality such as the SMBus Alert
Response Address. The model currently assumes that the slave does not need
to know when arbitration loss happens, but this may not be the case for PMBus,
due to its error handling functionality.

6.4 High level master layer

This is the high level master interface:

1 data MessageData = Read {

2 size :: Integer ,

3 variable :: Bool

4 } | Write [Word8]

5 data Message = Message {

6 msgAddress :: Address ,

7 msgData :: MessageData ,
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8 nonCritical :: Bool

9 }

10 data MessageDataReply = ReadReply [Word8] | WriteReply

Integer

11 data MessageReply = MessageReply {

12 acked :: Bool ,

13 msgDataReply :: MessageDataReply

14 }

15 type Transaction = [Message]

16 data TransactionReply = Success [MessageReply] |

ArbitrationLost | UndefinedCondition

17

18 data HMaster = HMaster {

19 nextTransaction :: HMasterState -> (HMasterState , Maybe

Transaction),

20 transactionReply :: HMasterState -> TransactionReply ->

HMasterState

21 }

22 hMasterToBMaster :: HMaster -> BMaster

The high level master (e.g. a device driver) can issue transactions, and get
back a transaction reply. In every step where the bus is free, nextTransaction
is applied. Once it returns a transaction (rather than Nothing), it is executed,
and at some point transactionReply will be applied; after that it repeats from
the beginning.

A transaction is simply a list of read and write messages, which result in the
corresponding list of read and write replies. A WriteReply indicates how many
of the written bytes were acknowledged by a slave.

There are three additional requirements on transactions which are not ex-
pressed in the type system and are checked by hMasterToBMaster: The trans-
action cannot be empty [1, p. 14, note 5]. The size of read messages must be
strictly positive (this is because we can only tell the device (via ACK/NACK)
whether to transmit further bytes after having read the first byte). Finally,
addresses must be between 0 and 127.

If the variable flag of a read message is set, the value of the first byte read
is added to the read size. This is needed e.g. for SMBus Block Read; size would
be set to 2 to enable the PEC byte, 1 otherwise.

Messages have a nonCritical flag. This influences how NACKs are handled.
By default (nonCritical=False), if the address byte or any written byte is not
acknowledged, the transaction is aborted and the rest of the messages are not
executed. (The remaining un-executed messages will still get a corresponding
MessageReply with acked=False.) This is important, as often later messages
rely on earlier messages having executed successfully (e.g. first message sets
address pointer, second message reads starting at this pointer). However, in
some cases we need to override this default behavior. For example, the I2C
START byte [1, p. 19] is a read from address 0, which will not be acknowledged;
but of course the rest of the transactions should still be executed. This can be
done by setting nonCritical=True.

hMasterToBMaster does not do retries of transactions, this is the respon-
sibility of the HMaster. It could also be implemented as an additional layer
(e.g. retryLayer :: Int -> HMaster -> HMaster, the first parameter is the
number of retries).
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6.5 High level slave layer

A high level slave is defined as a set of functions, which are applied when certain
events happen:

1 type Address = Integer

2

3 data HSlave = HSlave {

4 slaveAddress :: HSlaveState -> Address -> Bool ->

(HSlaveState , Bool),

5 slaveRead :: HSlaveState -> (HSlaveState , Word8),

6 slaveWrite :: HSlaveState -> Word8 -> (HSlaveState , Bool),

7 slaveStop :: HSlaveState -> HSlaveState

8 }

9

10 hSlaveToDevice :: HSlave -> Device

The Bool passed to slaveAddress indicates whether the access is a read.
The slave returns a Bool to indicate whether it wants to accept the transfer.
If it does, an ACK is sent and either slaveRead or slaveWrite are called an
arbitrary number of times. For slaveWrite, the slave can decide whether it
wants to ACK the received byte. If at any point the slave does not ACK, or an
arbitration loss is detected, no more slaveRead or slaveWrite events happen
before the next slaveAddress.

6.6 Connecting the devices

So far we have seen the individual interfaces, and the functions which translate
from higher to lower layers. It remains to actually connect different devices, so
they can talk to each other. This connection can be done at any level.

At the lowest level, there is globalStep:

1 data GlobalState = GlobalState {

2 devices :: [Device],

3 deviceStates :: [DeviceState],

4 busState :: BusState

5 }

6

7 globalStep :: GlobalState -> GlobalState

A GlobalState contains all the devices and their corresponding states, as
well as the state of the two bus wires. The globalStep function advances the
state by one step, by applying all devices with their current state and the bus
state, and collecting the new states and output bus state. All bus states are then
merged to one with a simple logical and operation. By iterating globalStep

starting from an initial state, the bus can be simulated.
The connection can also be made at the symbol layer:

1 data SGlobalState = SGlobalState {

2 sMasters :: [SMaster],

3 sMasterStates :: [SMasterState],

4 sSlaves :: [SSlave],

5 sSlaveStates :: [SSlaveState],

6 busSymbols :: [BusSymbol]

7 }
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8

9 sGlobalStep :: SGlobalState -> SGlobalState

The principle is the same as before, but now masters and slaves are separate.
However, the merging of bus symbols is more complicated. Depending on which
combination of symbols from masters and SDA bits from slaves appears, there
can be race conditions or even deadlocks. These situations are represented as
a list of symbols with multiple elements and an empty list respectively. In the
normal case, busSymbols contains just one element. A deadlock happens if a
slave drives SDA low while no master sends a bit. A race condition occurs if one
master sends a 1 bit, and another master sends a START or STOP symbol. This
is called ‘undefined condition’ in the specification (see section 5.1.1). Currently
sGlobalStep just picks the first element of the list. But the actual behavior is
that this is chosen non-deterministically, it may even be that different devices
see different symbols. Note that with a single master, undefined conditions are
impossible, since the master cannot send two different symbols at the same time.
However, with multiple masters, the model itself cannot prevent this; a possible
solution (master codes) is discussed in section 5.1.1.

Finally, the function hSlaveRunTransaction allows to directly apply a trans-
action on a high level slave:

1 hSlaveRunTransaction :: HSlave -> HSlaveState ->

Transaction -> (HSlaveState , TransactionReply)

Connecting the layers at the byte level should also be possible, however this
was not implemented due to time constraints.

6.7 Design tradeoffs

The model consists of multiple layers, which has several advantages. First, it
makes implementation easier (especially for the master side), as it is easier to
implement several small parts than one big monolith. It creates the possibility
to implement the lower layers in hardware and higher layers in software. Also,
we gain flexibility, because a client which needs more freedom than the high level
interface provides may use a lower level intermediary interface, rather than re-
implementing everything up to the lowest level. It should also facilitate creating
formal correctness proofs.

The high level master interface of the model for example restricts the ways
a driver can react to device responses within the same transaction to what is
possible with the available flags (such as variable). I hypothesize that the
vast majority of device drivers can be implemented within these constraints.
However, one could imagine scenarios such as atomic read-update-write, which
are not possible with the high level master interface. Such drivers could either
directly use the byte level interface together with locking. Alternatively, one
could implement a separate layer on top of the byte layer with a much more
flexible interface, e.g. using a bytecode language like eBPF to read and write
individual bytes and perform computation.

The interfaces of the model are defined as function types, and thus the lay-
ers can be connected simply by function composition. This style has several
advantages. It makes it relatively easy to implement the model, and to formally
state properties about it. The function application implicitly provides synchro-
nization and flow control, however only in one direction. For example, when the
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byte level master layer is busy transmitting a byte, it simply does not call up
to the higher level during this time, and thus the higher level cannot provide
new bytes until the current byte is finished. This is not possible in the other
direction, when the byte layer asks for the next byte, the upper layer is forced to
return some value (see section 6.8 for how this could be supported). However,
the function interface style also has some drawbacks. It puts the I2C bus at the
center of the whole system, which is not practical for implementations of real
systems. Each layer has to keep track of the state of the layer above itself, this
adds some complexity and is bug-prone, since it can happen that one forgets
to replace the old state with the new state after applying the function of the
higher layer.

6.8 Possible implementation of missing features

Some functionality has not been implemented in the model, this section discusses
how these features could be implemented.

Clock stretching This feature allows devices to block the bus by holding SCL
low. A device may need to do this if it needs more time before it can receive or
transmit the next byte. For example, a memory chip may need multiple clock
cycles to read a byte from non-volatile storage. It must stretch the clock until
the byte arrives, if it did not, the master would read garbage data.

This could be implemented by allowing each layer (except Device) to return
a ‘clock stretch’ value in place of an actual return value, e.g. by wrapping the
return type with a Maybe. As an example, the symbol level slave interface would
be changed to this:

1 type SSlave = SSlaveState -> BusSymbol -> (SSlaveState ,

Maybe Bool)

Each layer then has to pass this down, and at the lowest layer SCL has to
be pulled low. For the high level master interface, this is not necessary, since
there is no need to block the bus between transactions. It should not be very
difficult to implement in the model, but may be a bit tedious, since it has to be
supported in every layer.

Ten-bit addressing The I2C specification defines a ten-bit addressing pro-
tocol, which can be useful if the seven-bit address space is too small [1, p. 15].
But this protocol just uses normal I2C messages. The two most significant bits
of the ten-bit address are encoded by choosing one of four seven-bit addresses
reserved for this purpose. The remaining eight bits are then transmitted in the
first data byte of a write message. For writes, the actual data bytes immediately
follow. For reads, this one-byte read message is followed by a read message (in
the same transaction), and this read message has the same seven-bit address as
the write message had (thus it only carries the two most significant bits of the
ten-bit address).

This can be implemented as a layer on top of the high level interface, simply
by making the necessary transformation on the Transaction, and then again
in the other direction for the TransactionReply. Since Address is defined as
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Integer, the same data type could be used (however if one wants to mix seven-
bit and ten-bit addresses, more thought needs to be put into how these should
be distinguished).

Bus clear In the event that the SDA line gets stuck low, the I2C specification
recommends that the master should toggle SCL 9 times [1, p. 20].

This is an error recovery operation, if we need to perform it something has
gone wrong already. It could for example be that a slave somehow missed a
clock cycle during a write operation, and is now sending an ACK (pulling SDA
low) while the master already tries to send a STOP. But since SDA is pulled low,
the STOP condition is overriden. In this case, just toggling SCL 9 times would
not actually help, since afterwards we would be in the exact same situation; the
slave would think that a 0xff byte was written and would pull SDA low again for
the ACK. Even worse, this byte that the slave thinks was written may overwrite
important data or could cause arbitrary things to happen. So a better strategy
would be to toggle SCL up to 9 times, until SDA goes high. Still, because
something bad has already happened, it might be safer to reset all devices on
the bus instead.

If one wanted to implement this feature anyway, it could be implemented as
a separate Device. This bus recovery device would have to keep track of how
long SDA has been low, and to generate the bus clear after a timeout.
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7 Comparison to Linux API

In this section, the high level master interface of my model (section 6.4) is
compared to the API implemented in Linux [7]. Similarities and differences are
discussed, as well as limitations and additional features in Linux.

It turned out that two are very similar. In Linux, the kernel function
i2c transfer, and the I2C RDWR ioctl for userspace, take a list of i2c msg

as an argument. Each i2c msg has an address, a length, a data buffer, and a
flags field. This corresponds to Message in the model, with the msgAddress

field. For reads, the length is in size, and the data buffer maps to the contents
of ReadReply. For writes, the data buffer corresponds to the content of Write,
which also implicitly gives the length.

The following flags are available in Linux [5]:
I2C M RD: Defines the message as read or write. In the model, this is corre-

sponds to a Read or Write in msgData.
I2C M TEN: The address is a 10 bit address. This can be implemented as a

layer on top of the model, see section 6.8.
I2C M DMA SAFE: Defines the buffer as DMA safe. Not relevant for the model.
I2C M RECV LEN: Add the value of the first read byte to the length (only for

reads). This maps directly to the variable flag in the model.
I2C M NO RD ACK: Skip the ACK/NACK bit after each read byte. This is

used by just one driver for a non-I2C-compliant device (KS0127).
I2C M IGNORE NAK: Continue with a message even if NACKs are received.
I2C M REV DIR ADDR: Inverts the read/write bit.
I2C M NOSTART: Skips the repeated start and address byte. This can be used

as a performance optimization to avoid copying multiple segments of a message
into one big buffer. But it can also be used to talk to non-I2C devices which
require direction changes in the middle of a message.

I2C M STOP: Insert a STOP after this message, even when it is not the last
one of the transaction. It is unclear to me why this flag exists, as it seems that
in most cases, one could just send two transactions instead.

The Linux I2C API does not have an equivalent of the nonCritical flag.
When a written byte is not acknowledged, the bitbanging driver just returns
an error (EIO) with no additional information, whereas in my model, the field
in WriteReply specifies how many bytes were acknowledged. When an address
byte is not acknowledged, it will be retried some number of times, sending STOP,
START and the address byte again [8, around line 345]. This is problematic,
as sending a STOP breaks the current transaction. For example, in PMBus, a
transaction that starts with a read message is a Data Content Fault [3, section
10.9.1]. However, the address byte will still be acknowledged (and remember
that the slave has no way to NACK the read bytes, as these ACK bits are sent
by the master). Thus, assuming a transaction with a write and a read message
is sent to a PMBus device, and the address byte of the read message is retried
for some reason; then the read silently fails (producing all 0xff bytes) with no
error returned by the Linux API.

Linux also has an SMBus API, which is a subset of the I2C API and rec-
ommended to be used whenever possible. This is because some bus master
interfaces only support these commands, on the other hand there exists a func-
tion (i2c smbus xfer emulated) which translates SMBus calls to I2C calls [4].
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The Linux SMBus API is limited to reading or writing at most 32 bytes. In
SMBus 3.0, the limit was raised to 255 bytes [2, p. 85, D.3.6], but this change
has not been implemented in Linux so far.

Linux also has support for I2C multiplexers [6]. These multiplexers are ba-
sically switches which connect or disconnect bus segments, and can be operated
either over I2C itself or other means. On the software side in Linux, these
bus segments appear as separate virtual I2C master interfaces. When a driver
accesses this interface, the multiplexer driver first operates the switches, and
then redirects the I2C transaction to the actual master interface (which is now
connected to the corresponding bus segment).
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8 Non-standard devices

Some slave devices do not conform to the specification. Driver developers may
not be able to replace these components, and just have to deal with it.

One approach could be to also expose lower level APIs to driver developers
(such as the byte level or even symbol level interface in the model).

The approach taken in Linux is to add a set of flags to the master interface
which can be set to enable specific non-standard behaviors (see section 7). By
combining the I2C M REV DIR ADDR and I2C M NOSTART flags, linux drivers ba-
sically gain the same flexibility as if they had access to the byte level API in the
model, with the exception that the first byte after a START must be a write,
and the limitations on reacting to device responses within a transaction still ap-
ply. The first byte after a START can be controlled fully by setting the address
and I2C M REV DIR ADDR flags as necessary, and for following bytes the direction
can be changed arbitrarily by adding messages with the I2C M NOSTART flag. An
example of this is shown below (AS5011). Other flags allow some modifications
at the symbol level too.

It may well be that this is the most practical solution, since hardware master
interfaces also offer limited flexibility, and the kernel interface can only expose
the features that the hardware interface has. But it is probably impossible to
have a complete set of flags for every possible non-compliant behavior, and not
all hardware interfaces support the available flags. If a device driver needs more
flexibility, it would need to have its own bitbanging implementation, but this
may not be possible if the bus is not available via GPIOs, and also creates
problems if there are other devices on the same bus.

In the following, some examples are described and discussed:

24AA16 EEPROM This chip (datasheet at [13]) uses 8 addresses rather
than just one. The three least significant bits of the bus address are the most
significant bits of the data address. It is not entirely clear if this violates the
specification, but it will be a problem if e.g. an access control layer assumes that
each device has exactly one address.

AS5011 This hall sensor IC (datasheet at [14]) uses a non-compliant format
for register read operations. After the address, the master writes the register
address and then reads the data byte, without a repeated START in-between
[14, p. 8]. This is only compatible up to the byte layer of the model. In Linux,
the following code is used for this operation [9]:

uint8_t data[2] = { aregaddr };

struct i2c_msg msg_set[2] = {

{

.addr = client->addr,

.flags = I2C_M_REV_DIR_ADDR,

.len = 1,

.buf = (uint8_t *)data

},

{

.addr = client->addr,
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.flags = I2C_M_RD | I2C_M_NOSTART,

.len = 1,

.buf = (uint8_t *)data

}

};

KS0127 According to a comment in the Linux kernel source, this video de-
coder chip has a bug [10]:

/* We need to manually read because of a bug in the KS0127 chip.

*

* An explanation from kayork@mail.utexas.edu:

*

* During I2C reads, the KS0127 only samples for a stop condition

* during the place where the acknowledge bit should be. Any standard

* I2C implementation (correctly) throws in another clock transition

* at the 9th bit, and the KS0127 will not recognize the stop condition

* and will continue to clock out data.

*

* So we have to do the read ourself. Big deal.

* workaround in i2c-algo-bit

*/

This bug affects the byte layer; it has to skip the NACK bit after the last read
byte and immediately emit the STOP symbol. In Linux, the I2C M NO RD ACK

flag is used.

CAT5259 This digital potentiometer (datasheet at [15]) uses 8-bit slave ad-
dresses instead of the 7-bit addresses defined in the I2C specification. The second
byte is always written by the master, and contains an opcode which indicates if
following bytes are read or write. This is completely incompatible with the high
level interface. But it still seems to be compatible with the byte level interface;
data is transferred in 8-bit bytes and each byte is followed by an ACK bit from
the side which received the byte.

However, there is also a special Increment/Decrement Command. With this
command, the master sends an arbitrary number of 0 or 1 bits (used to fine-tune
the wiper setting), and a STOP at the end. At this point, even the byte level
interface is violated, only the symbol level remains compatible. Also note that
it does not make sense to use this command in a transaction, since in order to
effectively use it, the driver has to emit individual 0 or 1 bits and observe if the
target has been reached.

Arguably, the interface of this device deviates so strongly from the I2C spec-
ification that it should not be called I2C, but the datasheet does it anyway
[16].
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9 Comparison to a hardware master interface

Commonly, hardware I2C master interfaces are used, this frees up CPU cycles
compared to a bitbanging implementation. By comparing the interface of the
model implementation to an existing hardware interface, we can find potential
problems and limitations in both.

Typically, these interfaces operate at the byte layer. In some cases, they
have FIFO buffers which enable transfer of multiple bytes at once. With DMA,
it could even be imaginable to implement the complete high level interface in
hardware.

In this section, I describe how the interface of the Opencores I2C master core
[17] compares to the byte level interface of the model. This analysis is based
only on the documentation of the core.

In general, the two interfaces correspond relatively closely.
The command register allows to generate START, STOP conditions, and to

read and write bytes. This matches the BMasterAction type (see section 6.3).
Note that BActIdle is not needed, because the high level master can simply
choose not to send a command to the core (which is not the case in the model).
Also, the core has to support clock stretching (since it cannot force the layer
above to provide a command), which the model implementation currently does
not support (see section 6.8).

The status register roughly corresponds to BMasterResult in the model. It
is possible to detect NACKs and arbitration losses through the register. There
seems to be no way to detect undefined conditions, but that is not essential for
the operation of the bus; ideally these should not happen anyway.

The actual data bytes are read and written through the separate transmit
and receive registers.

A minor difference is that the START command has to be sent at the same
time as the first read or written byte, unlike in the model, where these are
separate. But there is another, crucial difference: For read commands, the
driver has to say whether the byte should be ACKed. In other words, it has to
know in advance whether the next byte that it reads will be the last byte. This
makes it impossible to implement variable length reads, since there we do not
know that in advance: If the length byte is 0, it was the last byte, in any other
case more bytes need to be read. Note that in the model, we do not have to
provide this information; instead it is provided implicitly in whether the next
command is again a byte read or a START or STOP condition. Consequently,
the Linux driver for this master core [11] does not support the I2C M RECV LEN

flag, and the byte level interface of my model is not compatible with this master
core interface.

In conclusion, we have found that the byte level interface of the model cor-
responds quite closely to an existing hardware interface, which indicates that it
makes sense to use this model interface as the interface between hardware and
software. But we also found a severe limitation in the hardware interface, which
may not have been obvious just from reading the documentation.
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10 QuickCheck properties

QuickCheck is a testing library for Haskell programs [20]. I have written two
properties of the model in the form of QuickCheck tests. These properties
generally have the form ∀x1 ∈ D1, . . . , xn ∈ Dn : P (x1, . . . , xn), where P is the
boolean property which should be true for all parameters in the given domains
Di. QuickCheck provides a powerful way of specifying these domains, even
generating arbitrary functions of a given type is possible. When running the
tests, the QuickCheck library randomly samples elements from the parameter
domains and evaluates the property for these parameters. By default, this is
repeated 100 times.

10.1 No errors with a single master

This property states that, given a list of transactions which are executed se-
quentially by a single master, and a set of arbitrary slaves connected to the bus,
no arbitration losses or undefined conditions occur while the transactions are
executed. At the same time, the property also checks that all transactions com-
plete within a certain number of device level steps (this number is calculated
from the list of transactions).

This already provides quite strong security and liveness properties, but does
not yet say that the data itself is transmitted correctly.

One caveat is that the model currently does not allow clock stretching. In a
system where it is allowed, it would also be necessary to prove that all devices
will always stop clock stretching within a finite or fixed amount of time in order
to guarantee liveness.

Also, in a real system there is usually always some small probability of errors
due to noise affecting the bus wires.

As already mentioned in section 5.1.1, the property does not hold in general
for multiple masters connected to the same bus.

10.2 No observable difference when connecting at differ-
ent layers

Building on the previous property, it still remains to show that the data itself
is received correctly. However, it is not trivial to formally define this property.
The approach which is taken here goes as follows: We take an arbitrary list
of transactions and an arbitrary slave as input. The transactions are then
executed twice: Once with the complete stack of layers and using globalStep,
and once with hSlaveRunTransaction, which directly applies the transaction
on the high level slave (see section 6.6). During both executions, logs of the
transaction replies and everything the slave sees are collected, and these logs
are then compared for equality. This way, hSlaveRunTransaction serves as a
specification for what a slave should observe when a given transaction is applied,
and what the transaction reply should be.

There is an additional property which compares the logs between connecting
a single master and multiple slaves at the device and at the symbol level.

26



10.3 Results

By runnning the QuickCheck tests, a bug was found in the model implementa-
tion, more exactly in bSlaveToSSlave. The original code looked like this:

1 idleState = (SSlaveState bState SSlStIdle , True)

2 ...

3 handleReceiveEvent bEvent =

4 let (newBState , bReaction) = bSlave bState bEvent in

5 if bReaction == BReactIdle then idleState

6 else (SSlaveState newBState (SSlStReceiveAck

bReaction), False)

The bug here was that if the call to bSlave returned BReactIdle, the code
did not update the higher level state to newBState, but continued to use the
old bState (which was obscured because this was referenced indirectly through
the idleState binding). To fix it, line 5 was replaced by the following:

1 if bReaction == BReactIdle then (SSlaveState

newBState SSlStIdle , True)
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11 EEPROM model

I implemented a model of an I2C EEPROM in Haskell, based on the 24AA256
datasheet [12].

The EEPROM can store 32 KB of data in non-volatile storage. It has a
15 bit address register, which can be set with a 2-byte write message. Read
messages can be arbitrarily long. For each byte which is read, the byte pointed
to by the address register is returned, and the address register is incremented by
one (wrapping around at the end of the EEPROM). Writes do not go directly
to the non-volatile storage, since that is only writable in whole 64-byte pages.
Writes are done using write messages longer than 2 bytes, the first two set the
address, the following bytes are written to a page buffer, wrapping around at
64-byte-aligned addresses. Only after the following STOP, the page buffer is
copied to the non-volatile storage. This operation takes up to 5 ms, and the
EEPROM does not respond to commands during this time.

The model is parameterized on the bus address, the data address size in bits
(15 for the 24AA256), and the write page size in bytes (64 for the 24AA256).

The state is defined as follows:

1 data HSlaveState = EepromSlaveState Int

EepromSlaveWriteState [Word8]

2 data EepromSlaveWriteState = EepromAddress Int |

EepromWrite [Word8] | EepromRead

It contains the data address register (as an Int), the write state, and of
course the contents of the EEPROM itself. The write state keeps track of where
the next written byte will be stored. In the EepromAddress state, it will be
shifted into the data address register. In the EepromRead state, when a byte is
written, the page in which the address pointer lies is copied to the page buffer
(represented by EepromWrite), and the byte is then written there. While in
the EepromWrite, after each written byte the address is incremented, wrapping
around at the page boundary.

The write protect pin is not modeled. Also, the page write time of 5 ms,
during which no commands are acknowledged, is not implemented in the model,
which would be difficult since the model does not contain a notion of time.

The model was then tested against an actual EEPROM through random
testing. First, the EEPROM was filled with random data, so that potential
errors would be more likely to be detected. The initial contents of the model
EEPROM were set to the same data. Then, using the QuickCheck library,
random transactions of increasing size, but only to the bus address of the EEP-
ROM, were generated and executed on both the real and the model EEPROM.
The transaction replies were compared, and at the end the final contents of the
EEPROM were read out and compared to the final contents of the model.

The EEPROM was connected to the GPIO pins of a Raspberry Pi (as shown
in figure 5), and a Haskell module was written which connects the I2C model to
these GPIOs. To avoid generating spurious START or STOP conditions when
both wires change at the same time, the module always sets SDA first is SCL
is high and SCL first if it is low.

As a result of the testing, some differences were discovered and fixed in the
EEPROM model. After testing again, no differences were observed anymore.
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Figure 5: An EEPROM was connected to the GPIO pins of a Raspberry Pi for
testing the model.

The first difference was that when a data write is followed by a repeat START
instead of a STOP, the write page buffer is discarded rather than being written
back to the EEPROM storage. Initially, the model did not contain a page buffer,
but directly wrote bytes to the EEPROM contents.

The second difference was in the way incomplete writes to the address regis-
ter are handled. Through experimentation, it was determined that the address
register is a shift register. After an incomplete address write, an additional bit
is shifted in, which is 1 if the write is followed by a repeat START, 0 for a STOP.

Both these differences only occur when using transactions different from
the formats documented in the datasheet. Instead of adjusting the model, an-
other option would be to restrict the domain of allowed transactions to the
documented ones. Especially for more complex devices, this option may be
preferable, since otherwise we are basically modeling unspecified or undefined
behavior.

29



12 Access control on an EEPROM

Ultimately, we want to be able to give clients fine-grained rights to perform
certain operations on devices attached to an I2C bus as a slave. In general,
which potential rights exist depends on the type of device. In this section we
start by looking at the rights on an EEPROM.

We define a right not by what transactions it allows on the bus, but rather by
what is allowed to happen on the EEPROM itself, which should be much simpler.
This is called an “abstract right”, and it is defined as a binary relation between
“abstract states”. We then additionally define a set of allowed transactions
for the abstract right, and prove, using a process called refinement, that the
effects of these transactions on the abstract state are contained in the abstract
right. Since the transactions operate on the “concrete state”, we need a “lifting”
function which extracts the abstract state from the concrete state.

First, I define the abstract state of the EEPROM and the abstract rights.
For now I only consider writes, for read rights one would have to additionally
keep track of which bytes were read (or alternatively state that the transaction
reply is independent of the initial value of the bytes for which reading is not
allowed).

The abstract state is simply a vector of bytes, i.e. an element of AS :=
{0, . . . , 255}N where N is the size in bytes of the EEPROM. An abstract write
right is described as a set WR ⊆ {0, . . . , N − 1}, only those bytes whose index
is contained in WR are allowed to be written to. Formally, the relation of
allowed state transitions for a given WR is: {a× b ∈ AS × AS | ai = bi ∀i ∈
{0, . . . , N − 1}, i /∈WR}.

The concrete state on the other hand additionally contains the data address
register and some state to parse bus messages, see section 11. For the concrete
right, we need to know the bus address of the EEPROM and the page size P , in
addition to N (which is always a power of 2 in the model). The set of allowed
transactions contains all transactions with just a single write message. Such a
write message will contain a data address a, followed by n data bytes. It must
hold that {a, a−(a mod P )+((a+1) mod P ), . . . , a−(a mod P )+((a+n−1)
mod P )} ⊆ WR for the transaction to be allowed. This rather complicated
formulation comes from the fact that writes wrap around at the page buffer
boundary.

Unfortunately, due to time constraints this direction of the work was not
continued. However, it may be useful as a starting point for future work.
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13 Conclusion

In this thesis, we have seen a model implementation of the I2C bus in Haskell.
The model has four layers of interfaces, from the low level device interface which
is shared between masters and slaves, to the symbol and byte level interfaces,
up to the high level master and slave interfaces. State machines build the
connection between lower and higher levels.

The model allows us to formally state end-to-end correctness properties be-
tween the high level master and slave interfaces, two such properties were pre-
sented.

The analysis of the Linux I2C API shows that it is very similar to the high
level master API of the model. This provides validation that the interface is
useful in practice and not too restrictive.

The work of building a model of an EEPROM, connecting the master side of
the I2C model to an actual EEPROM chip, and comparing the two by random
testing provides evidence that the model implementation works in practice and
is compatible with the existing implementation in the EEPROM.

We have seen that there exist devices whose slave interfaces violate the I2C
specification in various ways. To be able to work with these devices, drivers
either need to access the bus at lower levels, or the master interfaces have to
expose the right set of flags to enable non-standard behavior. At the same time,
existing hardware master interfaces may have limitations which break function-
ality that actually is compliant. As a result, we have no guarantees that a given
combination of hardware master interface and slave device is compatible. If a
formally verified HDL implementation of I2C could be created, which guarantees
compatibility thanks to end-to-end proofs, and hardware developers convinced
to use it in their designs, this could help reduce the extent of this problem.

The model implementation has some limitations. Because it is implemented
in Haskell, it is deterministic and thus does not encompass every correct im-
plementation of the specification. Ideally, we would like to define correctness
properties over all possible implementations, because the slave devices attached
to the bus may use any such implementation. On the other hand, the specifica-
tion does not actually leave much freedom, so this is maybe not as important.
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14 Future work

It still remains to actually prove the properties which were presented in section
10. The property in section 10.2 only considers a single master and slave, this
should be extended to multiple slaves, and potentially to multiple masters (but
this would be quite tricky).

It is also necessary to prove that the behavior of the actual hardware and
software implementation match the model. To this end, one could try to prove
this for an existing implementation. This proof would also serve as evidence
that the model is compatible with existing implementations, or could uncover
bugs if it fails.

A different idea is to directly translate (the lower layers of) the model to a
hardware description language (HDL). This was not investigated in detail, how-
ever it seems quite plausible that this is possible. There already exist compilers
such as Clash or the FHW project [25] which can translate Haskell to HDLs. All
parts of the model, with the exception of the high level master part, are state
machines with fixed size states, inputs and outputs, and do not use features
which are challenging for synthesis, like recursion. One challenge might how-
ever be the way the different layers are connected through function composition.
This may need to be turned into some interface with valid/ready handshaking.

Related to this, clock stretching is not yet implemented in the model, I
describe in section 6.8 how this could be done.

On a higher level, it should be possible to build access control functionality
on top of the model, and to make refinement proofs which relate abstract rights
defined on a slave device itself to the transactions allowed by the right. For
example, a driver could be restricted to only writing certain bytes in an EEP-
ROM by restricting which transactions it can issue. Work in this direction was
started in section 12, which could be continued in future work.
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A Haskell implementation of the model

1 -- I2C Bus Model

2 module Model where

3 import Data.Maybe

4 import Data.Word

5 import Data.Bits

6

7 ------------------------------------------------------------

8 -- Interface and type definitions

9 ------------------------------------------------------------

10

11 data BusState = BusState Bool Bool deriving (Eq, Show) --

SCL , SDA

12 data BusSymbol = SymIdle | SymStart | SymStop | SymBit Bool

deriving (Eq, Show)

13 type Address = Integer -- more correctly uint7 (but this

allows to use the same data structures for 10-bit

addressing)

14

15 -- Device interface

16 type Device = DeviceState -> BusState -> (DeviceState ,

BusState)

17 data DeviceState

18 = DirectSlaveDeviceState HSlaveState SlaveState BusState

19 | SlaveDeviceState SSlaveState Bool SymbolReaderState

20 | MasterDeviceState SMasterState LMasterTransmitState

SymbolReaderState

21 deriving (Show)

22

23 -- Symbol level slave interface

24 type SSlave = SSlaveState -> BusSymbol -> (SSlaveState ,

Bool)

25 data SSlaveState = SSlaveState BSlaveState SSlaveImplState

deriving (Show)

26

27 -- Byte level slave interface

28 type BSlave = BSlaveState -> BSlaveEvent -> (BSlaveState ,

BSlaveReaction)

29 data BSlaveState = BSlaveState HSlaveState Bool deriving

(Show)

30 data BSlaveEvent = BEvStart | BEvStop | BEvReceive Word8 |

BEvAck deriving (Show)

31 data BSlaveReaction = BReactIdle | BReactTransmit Word8 |

BReactReceive deriving (Eq , Show)

32

33 -- High level slave interface

34 data HSlave = HSlave {

35 slaveAddress :: HSlaveState

36 -> Address

37 -> Bool -- is read

38 -> (HSlaveState , Bool), -- ack

39 slaveRead :: HSlaveState -> (HSlaveState , Word8),
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40 slaveWrite :: HSlaveState

41 -> Word8

42 -> (HSlaveState , Bool), -- ack

43 slaveStop :: HSlaveState -> HSlaveState

44 }

45 data HSlaveState

46 = QuickSlaveState Bool

47 | EepromSlaveState Int EepromSlaveWriteState [Word8]

48 | CounterSlaveState Integer

49 | LoggingSlaveState HSlaveState [SlaveLogEntry]

50 deriving (Show)

51

52 -- Symbol level master interface

53 type SMaster = SMasterState -> BusSymbol -> (SMasterState ,

BusSymbol)

54 data SMasterState = SMasterState BMasterState

SMasterImplState deriving (Show)

55

56 -- Byte level master interface

57 type BMaster = BMasterState -> BMasterResult ->

(BMasterState , BMasterAction)

58 data BMasterState = BMasterState HMasterState (Maybe

BMasterTransaction) deriving (Show)

59 data BMasterAction = BActStart | BActStop | BActWrite Word8

| BActRead | BActIdle deriving (Eq , Show)

60 data BMasterResult = BResOk | BResNack | BResReadResult

Word8 | BResArbitrationLost | BResUndefinedCondition

deriving (Eq)

61

62 -- High level master interface

63 data HMaster = HMaster {

64 nextTransaction :: HMasterState -> (HMasterState , Maybe

Transaction),

65 transactionReply :: HMasterState -> TransactionReply ->

HMasterState

66 }

67 data HMasterState

68 = CounterMasterState Integer TransactionReply

69 | LoggingMasterState HMasterState [Maybe TransactionReply]

70 deriving (Show)

71

72

73 type Transaction = [Message]

74 data Message = Message {

75 msgAddress :: Address ,

76 msgData :: MessageData ,

77 nonCritical :: Bool

78 } deriving (Show , Read)

79 data MessageData = Read {

80 size :: Integer ,

81 variable :: Bool

82 } | Write [Word8] deriving (Show , Read)

83

84 data TransactionReply
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85 = Success [MessageReply] | ArbitrationLost |

UndefinedCondition

86 deriving (Eq, Show)

87 data MessageReply = MessageReply {

88 acked :: Bool ,

89 msgDataReply :: MessageDataReply

90 } deriving (Eq , Show)

91 data MessageDataReply = ReadReply [Word8] | WriteReply

Integer deriving (Eq , Show)

92

93

94 ------------------------------------------------------------

95 -- Model implementation , translating from higher to lower

levels

96 ------------------------------------------------------------

97

98 data SlaveState

99 = SlStIdle

100 | SlStStart

101 | SlStRcvAddress Integer Address

102 | SlStAck Bool

103 | SlStReadAck

104 | SlStRead Integer Word8

105 | SlStWrite Integer Word8

106 deriving (Show)

107

108 -- Translate a high level slave to a low level bus device

109 hSlaveToDeviceDirect :: HSlave -> Device

110 hSlaveToDeviceDirect hSlave (DirectSlaveDeviceState hState

state prevBusState) busState = let

111 busTrans = (prevBusState , busState)

112 (newHState , newState) =

113 if busTrans == busStop then (slaveStop hSlave hState ,

SlStIdle)

114 else if busTrans == busStart then (hState , SlStStart)

115 else if isClockDown busTrans then (

116 let (BusState _ bit) = prevBusState in

117 case state of

118 SlStIdle -> (hState , SlStIdle)

119 SlStStart -> (hState , SlStRcvAddress 0 0)

120 SlStRcvAddress count addr ->

121 if count == 7 then

122 let (newHState , ack) = slaveAddress hSlave

hState addr bit in

123 (newHState , if ack then SlStAck bit else

SlStIdle)

124 else

125 (hState , SlStRcvAddress (count + 1) (addr * 2

+ (boolToInt bit)))

126 SlStAck True ->

127 let (newHState , byte) = slaveRead hSlave hState

in

128 (newHState , SlStRead 0 byte)

129 SlStReadAck ->
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130 if bit then (hState , SlStIdle)

131 else

132 let (newHState , byte) = slaveRead hSlave

hState in

133 (newHState , SlStRead 0 byte)

134 SlStAck False -> (hState , SlStWrite 0 0)

135 SlStRead count byte ->

136 -- check for arbitration loss , required for

SMBus ARP Get UDID

137 -- Assumption: High level slaves don ’t need to

know when arbitration loss happens.

138 if (nthBit byte count) && not bit then (hState ,

SlStIdle)

139 else if count == 7 then (hState , SlStReadAck)

140 else (hState , SlStRead (count + 1) byte)

141 SlStWrite count byte ->

142 let newByte = byte * 2 + (boolToInt bit) in

143 if count == 7 then

144 let (newHState , ack) = slaveWrite hSlave

hState newByte in

145 (newHState , if ack then SlStAck False else

SlStIdle)

146 else (hState , SlStWrite (count + 1) newByte)

147 ) else (hState , state)

148 busOp = case newState of

149 SlStAck _ -> busTransmit

150 SlStRead count byte ->

151 if not (nthBit byte count) then busTransmit else

busIdle

152 _ -> busIdle

153 in

154 (DirectSlaveDeviceState newHState newState busState ,

busOp)

155

156 busStart = (BusState True True , BusState True False)

157 busStop = (BusState True False , BusState True True)

158 isClockDown (BusState scl1 sda1 , BusState scl2 sda2) = scl1

&& not scl2

159 busIdle = BusState True True

160 busTransmit = BusState True False

161

162 boolToInt False = 0

163 boolToInt True = 1

164

165 nthBit :: Word8 -> Integer -> Bool

166 nthBit byte n = testBit byte (7 - (fromInteger n))

167

168 data SymbolReaderState = SymbolReaderState Bool BusState

deriving (Show)

169

170 -- Shared symbol reader

171 readSymbol :: SymbolReaderState -> BusState ->

(SymbolReaderState , Maybe BusSymbol)

172 readSymbol (SymbolReaderState rcvActive prevBusState)
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busState = let

173 busTrans = (prevBusState , busState)

174 (busSymbol , nextRcvActive) =

175 if busTrans == busStop then (Just SymStop , False)

176 else if busTrans == busStart then (Just SymStart , False)

177 else if isClockDown busTrans then

178 let BusState _ bit = prevBusState in

179 (if rcvActive then Just (SymBit bit) else Nothing ,

True)

180 else if busState == busIdle && not rcvActive then (Just

SymIdle , False)

181 else (Nothing , rcvActive)

182 in

183 (SymbolReaderState nextRcvActive busState , busSymbol)

184

185 -- Translate a symbol level slave to a low level bus device

186 sSlaveToDevice :: SSlave -> Device

187 sSlaveToDevice sSlave (SlaveDeviceState sState transmit

readerState) busState = let

188 -- Parse incoming symbol

189 (nextReaderState , busSymbol) = readSymbol readerState

busState

190 -- Send incoming symbol to symbol level slave and get

back next symbol

191 (nextSState , nextTransmit) =

192 case busSymbol of

193 Just sym -> sSlave sState sym

194 Nothing -> (sState , transmit)

195 -- Transmit bit

196 nextBusState =

197 if nextTransmit then busIdle

198 else busTransmit

199 in

200 (SlaveDeviceState nextSState nextTransmit

nextReaderState , nextBusState)

201

202

203 data SSlaveImplState

204 = SSlStIdle

205 | SSlStReceive Integer Word8 | SSlStReceiveAck

BSlaveReaction

206 | SSlStTransmit Integer Word8 | SSlStTransmitAck

207 deriving (Show)

208

209 -- Translate a byte level slave to a symbol level slave

210 bSlaveToSSlave :: BSlave -> SSlave

211 bSlaveToSSlave bSlave (SSlaveState bState sState) symbol =

212 case symbol of

213 SymStart -> handleEvent BEvStart

214 SymStop -> handleEvent BEvStop

215 SymIdle -> idleState

216 SymBit bit ->

217 case sState of

218 SSlStIdle -> idleState
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219 SSlStReceive count byte ->

220 let newByte = byte * 2 + (boolToInt bit) in

221 if count == 7 then handleReceiveEvent (BEvReceive

newByte)

222 else (SSlaveState bState (SSlStReceive (count +

1) newByte), True)

223 SSlStReceiveAck bReaction ->

224 handleReaction (SSlaveState bState) bReaction

225 SSlStTransmit count byte ->

226 if nthBit byte count && not bit then

227 idleState -- arbitration lost

228 else if count == 7 then

229 (SSlaveState bState SSlStTransmitAck , True)

230 else

231 (SSlaveState bState (SSlStTransmit (count + 1)

byte), nthBit byte (count + 1))

232 SSlStTransmitAck ->

233 if bit then idleState

234 else handleEvent BEvAck

235 where

236 idleState = (SSlaveState bState SSlStIdle , True)

237 handleEvent bEvent =

238 let (newBState , bReaction) = bSlave bState bEvent in

239 handleReaction (SSlaveState newBState) bReaction

240 handleReaction s bReaction =

241 case bReaction of

242 BReactIdle -> (s SSlStIdle , True)

243 BReactTransmit byte -> (s (SSlStTransmit 0 byte),

nthBit byte 0)

244 BReactReceive -> (s (SSlStReceive 0 0), True)

245 handleReceiveEvent bEvent =

246 let (newBState , bReaction) = bSlave bState bEvent in

247 if bReaction == BReactIdle then (SSlaveState

newBState SSlStIdle , True)

248 else (SSlaveState newBState (SSlStReceiveAck

bReaction), False)

249

250

251 -- Translate a high level slave to a byte level slave

252 hSlaveToBSlave :: HSlave -> BSlave

253 hSlaveToBSlave hSlave (BSlaveState hState first) bEvent =

254 case bEvent of

255 BEvStart -> (BSlaveState hState True , BReactReceive)

256 BEvStop -> (BSlaveState (slaveStop hSlave hState)

False , BReactIdle)

257 BEvReceive byte ->

258 if first then

259 let

260 isRead = (byte .&. 1 == 1)

261 (newHState , ack) = slaveAddress hSlave hState

(toInteger (byte ‘shift ‘ (-1))) isRead

262 in

263 if not ack then (BSlaveState newHState False ,

BReactIdle)
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264 else if isRead then

265 let (newHStateR , byteR) = slaveRead hSlave

newHState in

266 (BSlaveState newHStateR False , BReactTransmit

byteR)

267 else (BSlaveState newHState False , BReactReceive)

268 else

269 let (newHState , ack) = slaveWrite hSlave hState

byte in

270 (BSlaveState newHState False , if ack then

BReactReceive else BReactIdle)

271 BEvAck ->

272 let (newHState , byte) = slaveRead hSlave hState in

273 (BSlaveState newHState False , BReactTransmit byte)

274

275

276 data LMasterTransmitState

277 = TransmitIdle

278 | BitPrepare Bool

279 -- Waiting for SCL to go high

280 | BitWait Bool

281 | StartWait

282 | StopWait

283 deriving (Show)

284

285 -- Translate a symbol level master to a low level bus device

286 sMasterToDevice :: SMaster -> Device

287 sMasterToDevice sMaster (MasterDeviceState sState state

readerState) busState = let

288 -- Parse incoming symbol

289 (nextReaderState , busSymbol) = readSymbol readerState

busState

290 -- Send incoming symbol to symbol level master and get

back next symbol

291 (nextSState , tmpNextState) =

292 case busSymbol of

293 Just sym ->

294 let

295 (nextSState , nextSymbol) = sMaster sState sym

296 tmpNextState = case nextSymbol of

297 SymIdle -> TransmitIdle

298 SymStart -> StartWait

299 SymStop -> StopWait

300 SymBit bit -> BitPrepare bit

301 in

302 (nextSState , tmpNextState)

303 Nothing -> (sState , state)

304 -- Transmit symbol

305 BusState scl _ = busState

306 (nextState , nextBusState) = case tmpNextState of

307 TransmitIdle -> (TransmitIdle , busIdle)

308 StartWait ->

309 if busState == busIdle then (TransmitIdle , BusState

True False)
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310 else (StartWait , busIdle)

311 StopWait ->

312 if busState == BusState True False then

(TransmitIdle , busIdle)

313 else (StopWait , BusState True False)

314 BitPrepare bit ->

315 if scl then (BitPrepare bit , BusState False bit)

316 else (BitWait bit , BusState True bit)

317 BitWait bit ->

318 if scl then (TransmitIdle , BusState False True)

319 else (BitWait bit , BusState True bit)

320 in

321 (MasterDeviceState nextSState nextState

nextReaderState , nextBusState)

322

323

324 data SMasterImplState

325 = SMStIdle | SMStBusBusy | SMStStart | SMStStop

326 | SMStWrite Integer Word8 | SMStWriteAck

327 | SMStRead Integer Word8 | SMStReadAck BMasterAction

328 deriving (Show)

329

330 -- Translate a byte level master to a symbol level master

331 bMasterToSMaster :: BMaster -> SMaster

332 bMasterToSMaster bMaster (SMasterState bState sState)

symbol =

333 case sState of

334 SMStIdle ->

335 if symbol == SymStart then busyState

336 else handleResult BResOk

337 SMStBusBusy ->

338 if symbol == SymStop then handleResult BResOk

339 else busyState

340 SMStStart ->

341 handleResult (if symbol == SymStart then BResOk else

BResUndefinedCondition)

342 SMStStop ->

343 handleResult (if symbol == SymStop then BResOk else

BResUndefinedCondition)

344 SMStWrite count byte ->

345 case symbol of

346 SymBit bit ->

347 if nthBit byte count && not bit then

348 handleResult BResArbitrationLost

349 else if count == 7 then

350 (SMasterState bState SMStWriteAck , SymBit True)

351 else

352 (SMasterState bState (SMStWrite (count + 1)

byte), SymBit (nthBit byte (count + 1)))

353 _ -> handleResult BResUndefinedCondition

354 SMStWriteAck ->

355 case symbol of

356 SymBit bit -> handleResult (if bit then BResNack

else BResOk)
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357 _ -> handleResult BResUndefinedCondition

358 SMStRead count byte ->

359 case symbol of

360 SymBit bit ->

361 let newByte = byte * 2 + (boolToInt bit) in

362 if count == 7 then handleReadResult

(BResReadResult newByte)

363 else (SMasterState bState (SMStRead (count + 1)

newByte), SymBit True)

364 _ -> handleResult BResUndefinedCondition

365 SMStReadAck bAction ->

366 case symbol of

367 SymBit bit ->

368 if bAction /= BActRead && not bit then

handleResult BResArbitrationLost

369 else handleAction (SMasterState bState) bAction

370 _ -> handleResult BResUndefinedCondition

371 where

372 busyState = (SMasterState bState SMStBusBusy , SymIdle)

373 handleResult bResult =

374 let (newBState , bAction) = bMaster bState bResult in

375 if bResult == BResArbitrationLost then

376 (SMasterState newBState SMStBusBusy , SymIdle)

377 else

378 handleAction (SMasterState newBState) bAction

379 handleAction s bAction =

380 case bAction of

381 BActIdle -> (s SMStIdle , SymIdle)

382 BActStart -> (s SMStStart , SymStart)

383 BActStop -> (s SMStStop , SymStop)

384 BActWrite byte -> (s (SMStWrite 0 byte), SymBit

(nthBit byte 0))

385 BActRead -> (s (SMStRead 0 0), SymBit True)

386 handleReadResult bResult =

387 let (newBState , bAction) = bMaster bState bResult in

388 (SMasterState newBState (SMStReadAck bAction), SymBit

(bAction /= BActRead))

389

390

391 data BMasterTransaction = BMasterTransaction {

392 msgs :: [Message],

393 replies :: [MessageReply],

394 state :: BMasterTransactionState

395 } deriving (Show)

396 data BMasterTransactionState = TrStStart | TrStAddress |

TrStRead Integer [Word8] | TrStWrite [Word8] Integer

deriving (Show)

397

398 -- Translate a high level master to a byte level master

399 hMasterToBMaster :: HMaster -> BMaster

400 hMasterToBMaster hMaster (BMasterState hState bState)

result =

401 if result == BResArbitrationLost || result ==

BResUndefinedCondition then let
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402 newHState =

403 if isJust bState then transactionReply hMaster hState

404 (case result of

405 BResArbitrationLost -> ArbitrationLost

406 BResUndefinedCondition -> UndefinedCondition)

407 else hState

408 in

409 (BMasterState newHState Nothing , BActIdle)

410 else

411 case bState of

412 Nothing ->

413 doNextTransaction hState

414 Just (BMasterTransaction [] replies _) ->

415 doNextTransaction (transactionReply hMaster

hState (Success (reverse replies)))

416 Just (BMasterTransaction (msg:msgs) replies

transState) ->

417 let

418 buildState state = BMasterState hState (Just

(BMasterTransaction (msg:msgs) replies state))

419 doNextMessage reply =

420 if isSuccessful msg reply || nonCritical msg

then

421 (BMasterState hState (Just

(BMasterTransaction msgs (reply:replies)

TrStStart)),

422 (if null msgs then BActStop else BActStart))

423 else

424 (BMasterState hState (Just

(BMasterTransaction []

425 (( reverse (map messageNackReply msgs)) ++

(reply:replies)) TrStStart)),

426 BActStop)

427 in

428 case transState of

429 TrStStart ->

430 let addr = msgAddress msg * 2 + boolToInt

(msgIsRead msg) in

431 if addr < 0 || addr > 255 then error "Address 

out of range"

432 else (buildState TrStAddress , BActWrite

(fromInteger addr))

433 TrStAddress ->

434 if result == BResNack then

435 doNextMessage (messageNackReply msg)

436 else

437 case msgData msg of

438 Read {size = s} ->

439 if s <= 0 then error "Empty read"

440 else (buildState (TrStRead s []),

BActRead)

441 Write [] -> doNextMessage (MessageReply

True (WriteReply 0))

442 Write (b:bs) -> (buildState (TrStWrite bs
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0), BActWrite b)

443 TrStRead readLength bs ->

444 let

445 BResReadResult b = result

446 newReadLen = readLength - 1 +

447 (if null bs && variable (msgData msg) then

toInteger b else 0)

448 in

449 if newReadLen <= 0 then

450 doNextMessage (MessageReply True (ReadReply

(reverse (b:bs))))

451 else

452 (buildState (TrStRead newReadLen (b:bs)),

BActRead)

453 TrStWrite _ bytesAcked | result == BResNack ->

454 doNextMessage (MessageReply True (WriteReply

bytesAcked))

455 TrStWrite [] bytesAcked ->

456 doNextMessage (MessageReply True (WriteReply

(bytesAcked + 1)))

457 TrStWrite (b:bs) bytesAcked ->

458 (buildState (TrStWrite bs (bytesAcked + 1)),

BActWrite b)

459 where

460 doNextTransaction hState =

461 let (newHState , maybeTrans) = nextTransaction hMaster

hState in

462 case maybeTrans of

463 Nothing -> (BMasterState newHState Nothing ,

BActIdle)

464 Just [] -> error "Empty transaction"

465 Just trans ->

466 (BMasterState newHState (Just (BMasterTransaction

trans [] TrStStart)), BActStart)

467

468 msgIsRead :: Message -> Bool

469 msgIsRead msg =

470 case msgData msg of

471 Read {} -> True

472 Write {} -> False

473

474 messageNackReply :: Message -> MessageReply

475 messageNackReply msg =

476 MessageReply False

477 (if msgIsRead msg then ReadReply [] else WriteReply 0)

478

479 isSuccessful :: Message -> MessageReply -> Bool

480 isSuccessful msg reply =

481 acked reply &&

482 case msgData msg of

483 Read {} -> True

484 Write bytes -> msgDataReply reply == WriteReply

(toInteger (length bytes))

485
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486 -- Directly run a high level transaction on a high level

slave

487 hSlaveRunTransaction :: HSlave -> HSlaveState ->

Transaction -> (HSlaveState , TransactionReply)

488 hSlaveRunTransaction _ _ [] = error "Empty transaction"

489 hSlaveRunTransaction hSlave hState tr =

490 (slaveStop hSlave newHState , Success replies)

491 where

492 (newHState , replies) = doTransaction hState tr

493 doTransaction hState [] = (hState , [])

494 doTransaction hState (m:ms) = let

495 (hStateM , reply) = doMessage hState m

496 (hStateMs , replies) =

497 if isSuccessful m reply || nonCritical m then

doTransaction hStateM ms

498 else (hStateM , map messageNackReply ms)

499 in

500 (hStateMs , (reply:replies))

501 doMessage hState msg =

502 let (hStateAddr , addrAck) = slaveAddress hSlave

hState (msgAddress msg) (msgIsRead msg) in

503 if not addrAck then

504 (hStateAddr , messageNackReply msg)

505 else let

506 (hStateReply , dataReply) =

507 case msgData msg of

508 Read { size = s, variable = v } ->

509 if s <= 0 then error "Empty read"

510 else

511 let

512 (_, firstByte) = slaveRead hSlave

hStateAddr

513 finalSize = s + (if v then toInteger

firstByte else 0)

514 (hStateRd , bytes) = doRead hStateAddr

finalSize

515 in (hStateRd , ReadReply bytes)

516 Write bytes ->

517 let (hStateWr , ackCount) = doWrite hStateAddr

bytes in

518 (hStateWr , WriteReply ackCount)

519 in

520 (hStateReply , MessageReply True dataReply)

521 doWrite hState [] = (hState , 0)

522 doWrite hState (b:bs) =

523 let (hStateB , wrAck) = slaveWrite hSlave hState b in

524 if not wrAck then

525 (hStateB , 0)

526 else

527 let (hStateBs , ackCount) = doWrite hStateB bs in

528 (hStateBs , ackCount + 1)

529 doRead hState count =

530 if count <= 0 then (hState , [])

531 else
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532 let

533 (hStateRd , b) = slaveRead hSlave hState

534 (hStateRest , bs) = doRead hStateRd (count - 1)

535 in (hStateRest , (b:bs))

536

537

538 ------------------------------------------------------------

539 -- Global state and step functions

540 ------------------------------------------------------------

541

542 data GlobalState = GlobalState {

543 devices :: [Device],

544 deviceStates :: [DeviceState],

545 busState :: BusState

546 }

547

548 globalStep :: GlobalState -> GlobalState

549 globalStep state = let

550 devicesWithState = zip (devices state) (deviceStates

state)

551 deviceBusStates = map (\(d, s) -> d s (busState state))

devicesWithState

552 (nextDeviceStates , busStates) = unzip deviceBusStates

553 in

554 state {

555 deviceStates = nextDeviceStates ,

556 busState = mergeBusStates busStates

557 }

558

559 mergeBusStates :: [BusState] -> BusState

560 mergeBusStates [] = BusState True True

561 mergeBusStates (( BusState scl sda):t) = let

562 BusState sclt sdat = mergeBusStates t

563 in

564 BusState (scl && sclt) (sda && sdat)

565

566 data SGlobalState = SGlobalState {

567 sMasters :: [SMaster],

568 sMasterStates :: [SMasterState],

569 sSlaves :: [SSlave],

570 sSlaveStates :: [SSlaveState],

571 busSymbols :: [BusSymbol]

572 }

573

574 sGlobalStep :: SGlobalState -> SGlobalState

575 sGlobalStep state =

576 case busSymbols state of

577 [] -> state -- deadlock

578 (busSymbol:_) -> let

579 mastersWithState = zip (sMasters state)

(sMasterStates state)

580 slavesWithState = zip (sSlaves state) (sSlaveStates

state)

581 (nextMasterStates , masterBusSymbols) = unzip
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582 (map (\(master , masterState) -> master masterState

busSymbol) mastersWithState)

583 (nextSlaveStates , slaveDrives) = unzip

584 (map (\(slave , slaveState) -> slave slaveState

busSymbol) slavesWithState)

585 in

586 state {

587 sMasterStates = nextMasterStates ,

588 sSlaveStates = nextSlaveStates ,

589 busSymbols = mergeBusSymbols masterBusSymbols

slaveDrives

590 }

591

592 -- If an empty list is returned , this indicates a deadlock.

593 -- If the returned list has multiple elements , this

indicates a race condition ,

594 -- each device sees one of the symbols in the list (not

necessarily the same).

595 -- This is called "undefined condition" in the I2C spec.

However , that

596 -- definition in the spec is more broad , and includes

combinations which can

597 -- be correctly resolved by arbitration.

598 mergeBusSymbols :: [BusSymbol] -> [Bool] -> [BusSymbol]

599 mergeBusSymbols masterSyms slaveDrives = let

600 someoneSends = (‘elem ‘ masterSyms)

601 slaveDrive = and slaveDrives

602 in

603 if someoneSends (SymBit False) then [SymBit False] else

604 if someoneSends (SymBit True) then (

605 if not slaveDrive then [SymBit False]

606 else if someoneSends SymStop then [SymBit False ,

SymStop]

607 else if someoneSends SymStart then [SymBit True ,

SymStart]

608 else [SymBit True]

609 ) else

610 if not slaveDrive then [] else

611 if someoneSends SymStop then [SymStop] else

612 if someoneSends SymStart then [SymStart] else

613 [SymIdle]
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