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Chapter 1

Introduction

Writing correct, bug-free code is a difficult task and rarely achievable on the
first try. As Kernighan and Plauger noted in The Elements of Programming
Style[15]:

Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write
it, how will you ever debug it?

Hence program authors need as much assistance as possible to investigate
the inevitable failures. While operating system (OS) developers have powerful
tools such as external debuggers, simulators and emulators at their disposal,
convenient debugging of user space applications requires tight integration with
core OS services.

We introduce a debugging interface for the Barrelfish research OS, support-
ing a similar debugging environment to that commonly found on popular Unix
systems. More concretely, it should be possible to debug Barrelfish applications
using the GNU Debugger (GDB). Towards that goal, we provide mechanisms
to configure breakpoints and watchpoints, inspect and modify memory regions
as well as core CPU registers and support single instruction stepping.

While most of the concepts are architecture independent, our proof of con-
cept implementation is targeted at the ARMv7 platform.

The work is structured as follows: Chapter 2 provides the necessary back-
ground information about Barrelfish, the available hardware debug features and
communication interfaces with the host debugger. Chapter 3 discuses the de-
sign and implementation of the new debug subsystem which is then evaluated in
chapter 4. Finally, we summarize our work and conclude with ideas for future
work in chapter 5.
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Chapter 2

Background

2.1 Barrelfish

In recent years, modern machines have featured an increasing number of cores
integrated by a complex interconnect network. A computer thus resembles a
local distributed system[7] made up of heterogeneous components. Barrelfish1, a
research OS primarily developed at ETH Zurich in collaboration with Microsoft
Research and other industry partners, embraces this viewpoint and employs the
Multikernel architecture[6].

The main idea is to run per-core independent OS instances which coordi-
nate by explicit inter-core message passing. With very few exceptions, state
is replicated rather than shared. This not only enables seamless support for
heterogeneous systems, but also promises to yield performance improvements
over more traditional shared memory designs for large scale systems.

The Barrelfish architecture also shares similarities with an exokernel[12].
A small kernel (CPU driver) provides minimal hardware abstraction, enforces
protection and performs authorization. Physical resource management (e.g.
virtual memory) is delegated to user space where the system run-time library
libbarrelfish provides a reasonable default implementation. This offers a
great deal of flexibility, but as we will see also poses some challenges for a
debugging subsystem.

As in a microkernel[18], message passing is used for communication among
a number of unprivileged user space processes which provide device drivers and
core system services for applications.

The remainder of this section introduces various Barrelfish concepts rele-
vant to our work. It provides the necessary background information needed to
understand the changes to core system components as detailed in chapter 3.

2.1.1 CPU Driver

Each core runs an independent, small, privileged kernel generally referred to
as a CPU Driver. The kernel is single-threaded, non-preemptible and avoids
dynamic memory allocations[20]. Core tasks of the CPU driver include[3]:

1http://www.barrelfish.org/
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• Enforcing protection and performing authorization of kernel objects and
physical resources by means of capabilities.

• Providing secure access to core hardware such as the MMU or the debug
components.

• Scheduling of dispatchers on the local core.

• Fast local messaging using a mechanism similar to Lightweight RPC[8] or
L4 IPC[19].

• Processing of hardware interrupts and subsequent delivery to user space
device drivers.

• Handling of faults and system calls from user space tasks.

Most services of the CPU driver are requested by user space through capa-
bility invocations performed by means of a system call interface. For our work,
the CPU driver is extended to securely manage all hardware debug resources.
In order to inspect running process state and configure hardware break- and
watchpoints, new interfaces will be introduced in section 3.2.

2.1.2 Monitor

CPU drivers are completely self contained and do not communicate with each
other. Instead they are complemented by monitors: specially trusted user space
processes, responsible for inter-core coordination. All monitor instances form an
inter-core network, which is used to synchronize state replication in a multi core
system. Agreement protocols are used to maintain consistency properties across
core boundaries. As such monitors implement large parts of the low-level OS
functionality, typically found in a monolithic kernel, in a distributed manner[3].

Monitors play an important role in system startup. They start per-core
instances of important system services and provide them with the required ca-
pabilities. Furthermore, they are instrumental in bootstrapping interprocess
communication. Upon domain creation each dispatcher is initiated with a com-
munication channel to its local monitor.

2.1.3 Capabilities

Capabilities[17] are used for access control to all kernel objects, physical memory
and hardware resources. Barrelfish uses a partitioned capability scheme similar
to that of seL4[16]. A capability is a typed memory area only available to
the local CPU driver. Multiple capabilities can be stored in a capability node
(CNode). A capability space (CSpace) is made up of a set of CNodes stored in a
guarded page table structure[20]. User space only indirectly refers to capabilities
by means of capability references which are looked up relative to a per-dispatcher
CSpace. Given such a reference, certain pre-defined capability operations can
be invoked through a system call interface.

Capabilities are typed and can be retyped based on a fixed derivation hierar-
chy[1]. Hamlet, a Domain Specific Language (DSL) implemented using Filet-o-
Fish[11], is used to specify the in-memory representation as well as the capability
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type system. The CPU driver enforces the type system and makes sure only
authorized changes are granted.

Except for inter-core communication purposes, capabilities are generally cre-
ated by the kernel during system boot-up and can then be retyped or split. At
system start, the kernel places capabilities in well known CNode slots in the
CSpace of init. Init then copies them to the monitor which in turn propa-
gates specific capabilities to core system services.

Inter core capability transfer and more generally consistency among capa-
bility spaces across cores is maintained by the trusted monitors.

As we will see in section 3.2, the capability type system was extended with
new capability types which model the available hardware debug resources. The
monitor was modified to hand over all necessary debug related capabilities to a
new user space debugging service.

2.1.4 Virtual Memory Management

Barrelfish uses a variant of self-paging[14] to handle virtual memory manage-
ment. User space domains are responsible for maintaining their own virtual
address space. All memory management is performed through appropriate ca-
pability invocations where the CPU driver ensures correctness.

More concretely, a task allocates RAM capabilities, retypes them to platform-
specific page table capabilities and inserts them into its root page table by means
of a suitable capability invocation. Similarly, RAM capabilities can be retyped
to mappable frame capabilities which are then inserted into a page table to
construct a virtual address space[6].

The run-time library libbarrelfish provides a default implementation suit-
able for most use cases. It also handles page faults delivered by the kernel
through an upcall mechanism[10].

Most relevant to our work, the debug subsystem will have to provide a
capability based mechanism to inspect and manipulate the virtual address space
of a foreign process.

2.1.5 Domains and Dispatchers

In Barrelfish a process context is made up of a domain which contains a number
of dispatchers (typically one per-core the domain runs on). Dispatchers repre-
sent a core bound scheduler entity. In a single-core environment, they resemble
the concept of a process in a more traditional operating system.

Address spaces can be shared among dispatchers in a domain, but CSpaces
are dispatcher - and hence - core specific.

The CPU driver maintains a Dispatcher Control Block (DCB) which holds
scheduler information, contains references to the root page table i.e. the virtual
address space, capability space and communication endpoints[20].

A second structure is shared between the kernel and user space to coordinate
user level threading, as will be discussed in the next section. It contains upcall
entry points into user space to signal page faults, traps, inter-domain messages
or the availability of a scheduler time slice.
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2.1.6 User Level Threading

libbarrelfish implements an user level threading library on top of the dis-
patcher abstraction provided by the CPU driver using a form of scheduler acti-
vation[2].

For debugging purposes, a thread is a particular interesting object because it
represents an independent flow of control using a dedicated stack as well as a set
of core registers. Therefore it is crucial to understand the interaction between
user level and kernel mode code involved in thread scheduling.

A dispatcher can either be enabled or disabled depending on the type of
code it currently executes. Enabled mode refers to the fact that the dispatcher
currently runs application code, while disabled indicates that the dispatcher is
executing book keeping code inside the threading library itself.

Each state has an associated save area, in a structure shared between the
kernel and user space, where core registers can be safely stored when a dispatcher
is preempted.

When a disabled dispatcher is resumed, the kernel restores the previously
saved register contents and execution continues inside the threading library.

When an enabled dispatcher is resumed, the CPU driver changes its mode to
disabled and then upcalls into the run handler. The user level thread scheduler
can now decide whether it wants to resume the preempted user level thread or
switch to another runnable thread. In the latter case, the register contents of the
preempted user level thread currently found in the enabled save area are copied
to a user space Thread Control Block (TCB). In both cases the dispatcher is
switched to enabled state immediately before application code is resumed.

A critical observation relevant to our work is, that the CPU driver only has
access to the register contents of the most recently preempted user space thread.
In the context of debugging, the register set of a currently inactive dispatcher
can indirectly be inspected and modified by manipulating its respective save
area.

2.1.7 Inter-dispatcher Communication

A number of core system services in Barrelfish are provided by user space
daemons exporting a remote procedure call (RPC) interface. Therefore inter-
dispatcher communication is crucial. Barrelfish uses the concept of point to
point channels to transfer typed messages defined in a interface definition lan-
guage called Flounder[5]. System services publish an interface to a name server.
Clients can then query the nameserver for an interface reference to which they
can bind to establish a shared channel. The generated Flounder stubs take
care of marshalling, message dispatching as well as message fragmentation and
reassembly. Furthermore, the Flounder stub compiler can target different inter-
connect driver (ICD) backends, thus providing a common interface over different
transport mechanism.

Message delivery on the same core is implemented by locale message passing
(LMP) based on the concepts of L4 IPC[19].

Communication crossing core boundaries is performed over a cache-coherent
memory region using a variant of user level RPC[9]. Intimidate knowledge of the
cache coherency protocol is exploited to transfer cache-line sized frames between
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cores without kernel intervention. This ICD is referred to as User-level Message
Passing (UMP)[20].

Our debugging service (see section 3.3) also exposes its functionality using a
Flounder based RPC interface. Similarly, integration with the user mode serial
driver uses the same communication primitives. LMP is explicitly used by the
CPU driver to inform interested user space domains about the occurrence of
hardware debug events.

2.1.8 Domain Creation and Process Management

Barrelfish currently only has a very primitive form of process or domain man-
agement[4]. During system boot up, init starts the monitor which typically
starts a number of core system services including startd and spawnd. The for-
mer spawns further boot modules. While the latter publishes a Flounder RPC
interface to spawn user domains. Furthermore, spawnd maintains a process list,
allocates domain IDs and provides an interface to kill a running domain.

All the previously mentioned services, which start domains in one way or
another, have one thing in common: they delegate the task of creating a dis-
patcher, initializing its virtual address and capability space, loading and relo-
cation of ELF image to two system libraries libspawndomain and libelf.

While discussing domain creation in a debugging context, we will see that
our user space debugging service re-uses the same basic infrastructure.

2.1.9 Serial Subsystem

The serial console is one of the main input/output channels used to access a
running Barrelfish system.

The bootstrap processor (BSP) runs a user space serial driver (/usr/serial)
which exports both a basic and a terminal service. The former provides a
remote procedure call (RPC) interface to read/write data and register a call-
back to be invoked whenever input is available. The latter integrates with
the libterm server library to provide terminal session support[13]. The used
libc (a variant of newlib) has been modified such that the stdio(3) library
functions use libterm client to coordinate I/O by means of inter-dispatcher
communication.

The CPU driver bypasses the user space serial subsystem completely and
directly interferes with the UART device to print various diagnostic messages.
Interleaving of messages from different cores is prevented by using a shared
spinlock. This is one of the very few cases where the CPU drivers use locking
to protect shared state.

Coordinating access to the serial console is important for our work because
it not only carries regular system I/O, but potentially also serves as a commu-
nication channel to the host debugger.

2.1.10 Angler and Fish

Angler is a session initialization manager roughly comparable to getty(8) as
typically found on a Unix system. At system startup, it starts a new terminal
session and then spawns fish, the Barrelfish shell. Fish provides a simple
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command line interface to navigate the file system, launch new user domains
and inspect system state.

2.1.11 Mackerel

Device drivers often contain a lot of tedious and error prone bit twiddling code to
manipulate hardware state. Barrelfish improves upon this hand written code by
employing Mackerel[21], a Domain Specific Language (DSL) used to specify the
in-memory format of registers and other data structures dictated by hardware
interfaces.

Given such a hardware description, the Mackerel compiler generates a C
header file with inline functions to access, manipulate and pretty print register
values. By default, Mackerel assumes that device communication takes place
through a memory mapped area. However the concept of address spaces enables
Mackerel to integrate with almost any device interface. A driver developer only
has to provide a set of matching C functions for raw device access. These
pluggable backends improve portability by abstracting away different hardware
access mechanisms.

In the context of our work, Mackerel is used by the CPU driver to access
the hardware debug components.

2.2 ARM v7 Debug Architecture

This section summarizes the relevant portions of the ARM v7 Debug Architec-
ture as specified in Part C of the ARM Architecture Reference Manual (ARMv7-
A and ARMv7-R edition), introduces the required nomenclature and describes
the software interface to the available hardware debug facilities.

2.2.1 Debugging Modes

The ARM architecture provides both a non-invasive and an invasive debug
type. While the former allows the observation of data and program flow (e.g.
by means of trace support, profiling and performance monitors), modification
of the main processor state, as required for run-control debugging, is restricted
to the latter.

The invasive debug component supports two run-time configurable modes
of operation. In halting debug-mode any debug event will immediately halt the
complete processor and defer any further action to an external debugger. More
relevant to our work is monitor debug-mode where software debug events trigger
debug exceptions which can be handled by the operating system.

The invasive debug features can be used to compromise system security. As
a consequence the debug architecture specifies complex interactions with the
Security Extensions. For the scope of this work we assume that the Security
Extensions are disabled and non-secure invasive debug mode is enabled. All
further discussion assumes the debug hardware to be configured for monitor
debug-mode.
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2.2.2 Software Interface to the Debug Hardware

A software interface to the debug architecture is exposed through a set of debug
registers. These registers can be accessed by means of a co-processor 14 (CP14)
interface. Co-processor register contents can be read and written with the mrc

and mcr assembly instructions, respectively. In both cases, the register number is
encoded in the instruction operands. Optionally a subset of the debug registers
can also be made available through a memory-mapped interface.

2.2.3 Breakpoints and Watchpoints

The BKPT instruction can be used for software breakpoints. Upon its execution
an unconditional BKPT instruction debug event is generated.

Hardware breakpoints are supported by 2 to 16 Breakpoint Register Pairs
(BRP) which comprise of a Breakpoint Control Register (BCR) and a Break-
point Value Register (BVR). A BRP can be associated to another BRP thereby
forming a linked BRP. For a breakpoint event to occur the condition of both
involved BRPs has to be fulfilled. Multiple BRPs can be linked to the same
BRP.

Each BCR can be set to one of the following non-exhaustive breakpoint
types:

• Linked instruction address match: the instruction address value equals
the value in the BVR.

• Linked instruction address mismatch: the instruction address value does
not equal the value in the BVR.

• Linked Context ID match: the Context ID equals the current value of the
CONTEXTIDR register made of a 24 bit Process Identifier and 8 bit Address
Space Identifier. Not all, but at least 1 BCR supports this type.

We now illustrate the necessary steps to configure a hardware breakpoint
matching an instruction virtual address (IVA) in a particular context. Two dif-
ferent BRP, i and j, are used. The former is concerned with the IVA match,
while the latter restricts the match to the given context. The association be-
tween the two BRP is formed by linking the BRPi to BRPj. The BCRi is
configured for linked instruction address match and the corresponding BVRi
contains the instruction address to match. Furthermore, BCRj is set to linked
Context ID match and BVRj holds the Context ID. Such a configuration is
depicted in figure 2.1.

Both software and hardware breakpoint events generate a Prefetch Abort ex-
ception. This in turn executes the corresponding exception handler as registered
in the exception vector.

Analogously, hardware watchpoints are defined by a Watchpoint Register
Pair (WRP) comprised by a Watchpoint Control Register (WCR) and a Watch-
point Value Register (WVR). A WRP can be restricted to a certain process and
address space by linking it to a BRP configured for linked Context ID match.
A WCR can be used to match a whole memory range by configuring byte ad-
dress selection and masking. For our work we will only ever use matching on a
properly aligned machine word sized region stored in the WVR.

10



BCR0: Linked IVA match

BVR0: 0x00400474

BRP0

WCR0: Linked watchpoint

WVR0: 0x00096dc8

WRP0

BCR5: Linked Context ID match

BVR5: 0x87d35c00

BRP5

Figure 2.1: Linked matches: both a breakpoint (BRP0) and watchpoint
(WRP0) is configured to match in a particular context defined by
BRP5.

If all conditions are met, a Data Abort exception is raised and further actions
take place according to the state in the exception vector. As such the behavior
is similar to a page fault.

The exact debug event can be recovered by decoding the relevant fields of
the IFSR (Instruction Fault Status Register), DFSR (Data Fault Status Register)
and DBGDSCR.MOE (Debug Status and Control Register).

2.3 Pandaboard ES Debug Features

For our proof of concept we chose the Pandaboard ES2 Rev B1 which features
a Texas Instruments OMAP4460 SoC with a cache-coherent dual core ARMv7a
Cortex A9.

The Cortex A9 conforms to the ARM v7 Debug architecture, as described
in the previous section, and implements all CP14 registers. It provides:

• 6 Breakpoint Register Pairs, 2 of which support Context ID matches

• 4 Watchpoint Register Pairs

Hence a maximum of 5 hardware breakpoints can be set simultaneously in a
single process context.

The Pandaboard also features a JTAG connector for whole system debugging
with an external debugger.

It also provides a single RS-232 port connected to the UART2 interface of the
OMAP4460 SoC which is used for regular console output. Additional UARTs
are available, but by default not wired up to an external board interface.

2http://www.pandaboard.org/
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2.4 GDB Remote Serial Protocol

The GNU Debugger3 (GDB) is a powerful debugger often used on Unix systems
and developed in conjunction with the GNU Binutils. Besides native debugging,
where both the debugger and the application under debug are running on the
same operating system, it also features a remote debugging mode.

Much of the heavy lifting (e.g. disassembling) is performed on the host
machine while only a limited set of operations are performed on the target
device:

• Read/Write memory regions

• Read/Write core registers

• Insert/Remove breakpoints

• Insert/Remove watchpoints

• Process state control

Although Barrelfish provides a limited POSIX compatibility library, porting
GDB to run natively on Barrelfish would be a major undertaking and out of
scope for our work. Therefore we target a remote debugging scenario.

2.4.1 Packet Format and Protocol Conventions

The GDB Remote Serial Protocol used for communication between the host gdb
process and the target gdbserver is introduced in this section. The closest to
a protocol specification can be found in Appendix E of the Debugging with gdb
manual[23]. We use the same notation for host to target communication (and
vice versa) indicated by -> and <-, respectively.

Communication is packet based, the basic format is:

$packet-data#checksum

A packet always starts with a $ followed by the variable length packet data
which is eventually terminated by a #. This end marker is immediately followed
by a two digit hexadecimal encoded checksum computed as the unsigned 8bit
sum modulo 256 of every packet data byte. In the packet data any occurrence
of the special symbols x ∈ {$, #, *, }} has to be escaped as }y where y = x^0x20
(^ denotes a bitwise XOR). By default, all packages are acknowledged positively
+ or negatively -, the latter of which should trigger a re-transmission. Packets
can contain fields separated by either one of ;, , or :. Binary data is generally
transmitted in a hexadecimal encoding. The default number format is also hex-
adecimal, but leading zeros are suppressed. Responses can optionally also use
a run-length encoding scheme to save space in the transferred message payload.
Unsupported packages must not be dropped, but acknowledged with an empty
response: $#00. Successful completion of a request is generally signaled with an
OK data reply packet. In case of an error some packages use a two digit error
code Enn, however ”that number is not well defined”. In practice some imple-
mentations use suitable constants (i.e. those smaller than 256) from errno(3)

as specified by POSIX.

3https://www.gnu.org/software/gdb/
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For illustration purposes we provide a short protocol transcription showing
how single stepping is achieved. As previously explained, the leading arrows
indicate the direction in which packets are sent. Only the packet data payload
is shown, for clarity the packet header and checksum are omitted. Lines printed
in italic and starting with // are comments, and not part of the data stream.

// receive packet for single stepping

-> s

// send acknowledgment

<- +

// time passes , instruction is executed

// send a stop reply signal (process has halted)

<- S05

// receive acknowledgment

-> +

// read register 1

-> g1

<- +

// hexadecimal encoded register value

<- ffffffff

-> +

Listing 2.1: Extract of a GDB remote serial protocol transcription for
instruction single stepping.
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Chapter 3

Design and Implementation

This chapter discusses design decisions and implementation choices made while
developing the debugging interface for Barrelfish. The required changes to each
system component are reviewed.

3.1 Debug System Architecture Overview

gdb

picocom

Host OS

CPU Driver, Core 0

Monitor

serial2

serial3

fish

gdbserver

Barrelfish

Figure 3.1: Debug system architecture overview (== represents a serial line,
↔ denotes Flounder based RPC communication channels).

Figure 3.1 illustrates the debug related system components and their respec-
tive communication channels. The privileged CPU driver exposes a capability
based mechanism to configure the hardware debug unit. A number of regular
user space domains (pictured as circles) run on top of the kernel. gdbserver
implements the GDB remote serial protocol and coordinates debugging of Bar-
relfish application domains. Fish, the command shell, is used to initiate a new
debugging session. Communication with the host operating system is estab-
lished by two independent instances of a user level serial device driver. Two
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distinct UART ports are used to provide separate channels for regular system
I/O and the GDB remote serial protocol, respectively.

3.2 CPU Driver Changes

This section focuses on the necessary kernel changes needed to support a user
space debugging service. Conceptually the following functionality has to be
provided:

• Run-control of the process under debug (e.g. process resumption).

• Read/Write core registers of a different dispatcher.

• Read/Write memory regions of a different virtual address space.

• Configuration of hardware debug resources (e.g. break- and watchpoints).

• Debug Event delivery to a user space debugger.

Process state control, access to the core registers and an LMP based debug
event delivery mechanism are provided by new dispatcher capability invocations.
Remote memory manipulations are enabled by exposing a query interface to the
kernel internal capability mapping database. A new invocation on the root page
table capability provides a mean to retrieve a frame capability corresponding to
a particular virtual address. The capability type system has been extended to
cover the needs of the available hardware debug resources.

3.2.1 New Capability Types

Two new capability types were defined using Hamlet:

cap BreakReg_ARM {

uint8 id; /* register number 0-15 */

};

cap WatchReg_ARM {

uint8 id; /* register number 0-15 */

};

Listing 3.1: New capability definitions in Hamlet.

They model a Breakpoint Register Pair (BRP) and a Watchpoint Register
Pair (WRP) (see section 2.2 for details), respectively. More concretely, one such
capability authorizes access to both the Breakpoint Control Register (BCR) and
its associated Breakpoint Value Register (BVR).

We currently do not support multiple simultaneous debugging session, hence
the in-memory layout of these capabilities is extremely simple: they only contain
a register identifier. The actual register contents are always re-read directly from
the hardware when needed.

The generic kernel startup code was modified to create two new capability
nodes (CNodes) in known slots of the root CNode. These CNodes are then
dynamically filled with register capabilities in a platform specific debug initial-
ization routine, based on the number of available debug registers.
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errval_t platform_debug_init(coreid_t core_id ,

struct cte *break_cn ,

struct cte *watch_cn);

The BreakReg_ARM capability type supports the following capability invoca-
tions to configure a hardware breakpoint within a particular virtual address
space:

• link(struct capref reg_cap, struct capref disp_cap)

It associates or links a BRP reg_cap to a dispatcher capability, meaning
that the BRP will be configured for linked Context ID match. As Process
ID we currently use the 24 most significant bits of the dispatcher (struct
dcb) memory address. The 8 bit Address Space Identifier is currently not
used and always set to zero (all TLB entries are untagged).

• set(struct capref brp_cap, struct capref lbrp_cap

lvaddr_t break_addr, enum breakpoint_flags)

This configures the BRP referenced by brp_cap to generate a debug event,
in the context referred to by a second BRP lbrp_cap, at the instruction
virtual address (IVA) specified by break_addr. The second BRP must
previously have been set up for a linked Context ID match. The last ar-
gument indicates the break point type: match or mismatch and its status:
enabled or disabled.

Analogously, the WatchReg_ARM capability type supports a similar set invo-
cation to configure a WRP:

• set(struct capref wrp_cap, struct capref lbrp_cap

lvaddr_t watch_addr, enum watchpoint_flags)

This configures the WRP referenced by wrp_cap to generate a debug event
in the context referred to by the BRP lbrp_cap (which must be a previ-
ously linked BRP) at the virtual address watch_addr. The last argument
can be used to specify the type of watchpoint: read or write and its status:
enabled or disabled.

3.2.2 New Capability Invocations for Existing Capability
Types

When a hardware debug event occurs, the user space debugger needs to be
notified. It then inspects the process state and will eventually resume execution.
For these reasons, the existing dispatcher capability type gained the following
new debug related capability invocations:

• attach_debugger(struct capref disp_cap, struct capref ep_cap)

• detach_debugger(struct capref disp_cap)

Un/register a local endpoint to which debug events associated with the
given dispatcher will be sent to in form of LMP messages.
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• resume(struct capref disp_cap, lvaddr_t pc)

Only valid if the dispatcher is currently in enabled state. Sets the program
counter of the enabled save area to pc and makes the dispatcher runnable
i.e. adds it to the run queue. While the system call returns immediately,
the resumed dispatcher will be scheduled some time in the future, depend-
ing on current scheduler state. If the given pc is zero, the program counter
remains unchanged and execution will resume at the current location.

• read_register(struct capref disp_cap, int reg, uint32_t *value)

• write_register(struct capref disp_cap, int reg, uint32_t value)

Read/write a given register as indexed into the enabled save area of
the dispatcher. reg must refer to one of the core registers as defined
in barrelfish_kpi/registers_arch.h i.e. in range 0 − 16. These invoca-
tions are only valid for enabled dispatchers. If applied to a dispatcher in
state disabled, an error code is returned.

The debugger needs to be able to inspect and modify memory regions of
the process being debugged. As outlined in the section about virtual memory
management, we need to get hold of a frame capability to the underlying memory
region which can then be mapped into the virtual address space of the debugger.
While it would be possible to replicate the virtual address resolution in user
space by mapping and walking the various levels of page tables, the kernel
already has all the required information in its capability mapping database.
Therefore it was deemed simpler to add new capability invocation to the VNode
capability type representing a root page table:

• resolve(struct capref cap, genvaddr_t vaddr,

capaddr_t dest_cn, int dest_bits, capaddr_t dest_slot)

Given a root page table capability: resolve a virtual address vaddr and
store a frame capability in the capability slot referenced by the last three
parameters.

3.2.3 Debug Exception Handling and Delivery

As described in section 2.2.3, a debug event generated by a hardware breakpoint
or watchpoint will cause a prefetch or data abort, respectively.

The Barrelfish CPU driver sets up the exception vector in such a way that
both of these eventually end up in a common handler routine. This function
was modified to check whether the cause of the exception is in fact a debug
event. If not, the regular user space self-paging code inside libbarrelfish is
invoked via an upcall.

Once a debug event is detected:

1. It is checked whether the currently running dispatcher control block (DCB)
has an associated debug endpoint to which debug events should be deliv-
ered to. If no endpoint has been registered by using the attach debugger

capability invocation, all breakpoints for this dispatcher are cleared. The
domain remains runnable and regular control flow resumes.
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2. The currently running dispatcher is removed from the scheduler run-queue.

3. The concrete type of the debug event (breakpoint or watchpoint) is deter-
mined. A two word sized LMP message of the form

{type, faulting address}

is delivered to the registered debug endpoint. This re-uses the same mech-
anism responsible for IRQ delivery to user space device drivers.

4. The scheduler is invoked to run some other dispatcher. Eventually the user
space debug service will get a time slice and process the LMP message.

If a debug event occurs while in kernel mode, the kernel dumps diagnostic
information and then panics. This does not concern our user level code debug-
ging, hardware breakpoints and watchpoints are configured to only affect user
mode.

3.2.4 Debug Hardware Access

The debug hardware configuration, exposed through the previously introduced
capability invocations, is performed by means of a Mackerel device definition
(see also section 2.1.11).

On the Pandaboard we chose the Extended Co-Processor 14 interface to ac-
cess the debug registers. For this purpose, a new header file cp14.h, containing
a number of inline functions implementing the low level device access, is intro-
duced. As an example we will illustrate configuration of a Breakpoint Control
Register (BCR). Notice that the register number is encoded in the operands of
the assembly instruction:

static inline void cp14_write_dbgbcr(int bcr , uint32_t val)

{

switch (bcr) {

case 0:

__asm volatile("mcr p14 , 0, %0, c0 , c0 , 5" ::

"r" (val));

break;

case 1:

__asm volatile("mcr p14 , 0, %0, c0 , c1 , 5" ::

"r" (val));

break;

// up to register 15

}

}

Listing 3.2: Low level debug register manipulation routine.

In Mackerel the in-memory format for a new register type (dbgbcr) was
added. Each such register type is accompanied with a corresponding Mackerel
address space to hook up the raw co-processor access functions.

space cp14_dbgbcr(idx) valuewise "CP14 access for DBGBCR";

regarray dbgbcr cp14_dbgbcr (0x00) [16] "Breakpoint Control

Registers (DBGBCR)" type(dbgbcr);

Listing 3.3: Mackerel address space definition for a BCR.
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We conclude this section with an example of a C code snippet illustrating
the setting of a few register fields. More concretely, BCR 0 is linked to BCR 5.

// hook up raw device access functions

#define arm_debug_cp14_dbgbcr_write_32(dev , reg , val) \

cp14_write_dbgbcr ((reg), (val))

// include generated Mackerel device definition

#include <dev/arm_debug_dev.h>

// initialize Mackerel device

arm_debug_t dev;

arm_debug_initialize (&dev);

int reg = 0; // register to configure

int lbrp_reg = 5; // linked BRP

// change a couple of register fields

arm_debug_dbgbcr_t bcr = 0;

bcr = arm_debug_dbgbcr_enable_insert(bcr , 1);

bcr = arm_debug_dbgbcr_linked_brp_insert(bcr , lbrp_reg);

// write register value back to register

arm_debug_dbgbcr_wr (&dev , reg , bcr);

Listing 3.4: Debug hardware configuration example using Mackerel.

Error prone, hand written bit twiddling code is avoided. Instead, a number
of self documenting calls to generated inline functions are used. This device
abstraction also allows to change the underlying hardware access mechanism.
Controlling the debug hardware by means of a memory mapped interface would
only require minimal changes to the Mackerel device definition and initialization
routine.

3.3 gdbserver: a User Space Debugging Service

In user mode the main component is a new debugging service /usr/gdbserver.
It exposes a Flounder interface to create and start a new domain under de-
bug. gdbserver implements the GDB remote serial protocol as described in
section 2.4 and enables debugging of Barrelfish application code through a host
gdb instance. The low level transport mechanism is realized by connecting to
the user space serial driver. In response to the received host GDB packets, the
previously presented capability invocations are used to provide the necessary
debug facilities.

3.3.1 Domain Creation

As alluded to in section 2.1.8, domain management in Barrelfish is currently
rather primitive. In order to initiate a debugging session, we need to be able to
create a dispatcher in a non-runnable state. The debugger also needs access to
at least the dispatcher and root page table capabilities of the new process being
debugged. Neither of these things are possible through the currently exposed
RPC interface of spawnd.
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To minimize changes to the existing system, it was decided to bypass spwand
completely and instead directly link against libspawndomain for domain cre-
ation. While this approach duplicates some of the spawnd functionality, it is
simpler because the debugger, as spawning domain, can hold on to all relevant
capabilities.

3.3.2 Memory Access

The debugger needs access to the virtual address space of the process under
debug. As we have seen in section 2.1.4, memory management in Barrelfish
is performed by means of suitable capability invocations. Hence the debugger
needs to gain access to a frame capability matching a given virtual address of
a different address space. The exact procedure used to manipulate a foreign
address space is:

1. Invoke resolve of the root page table capability (as created during domain
startup) with the virtual address of interest. The CPU driver queries its
internal book keeping data structures and if found, returns a matching
frame capability referencing the physical memory area to which the virtual
address currently maps to.

2. Map the frame capability into the address space of the debugger.

3. Perform the necessary inspections or modifications.

4. Unmap the frame capability from the address space of the debugger and
release all associated resources.

3.3.3 Core CPU Register Access

Besides access to the virtual address space, the debug service also needs to
be able to read and write core CPU registers. In Barrelfish this is further
complicated by the use of scheduler activations and user level threading (see
section 2.1.6).

The CPU driver is not aware of the user level threads. It only maintains per-
dispatcher (not per-thread) save areas to temporarily store register contents.
Therefore register access is restricted to the least recently running user space
thread. Accessing the registers of a disabled dispatcher, i.e. one currently
running code inside the user level threading library itself, is not supported.

These limitations stem from the fact that the underlying read register

and write register invocations on the dispatcher capability always access the
enabled save area of the referenced dispatcher. It is only guaranteed, that the
register modifications take effect once the preempted thread resumes. However,
resuming the dispatcher will trigger the run upcall and the user level thread
scheduler might subsequently decide to run another thread.

3.3.4 Hardware Breakpoints and Watchpoints

Hardware breakpoints are of particular interest because besides regular instruc-
tion address match, they also support an instruction mismatch mode. This
functionality is exploited to implement single instruction stepping. The idea is
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to set a mismatch breakpoint at the current program counter location. As a re-
sult the CPU executes exactly one instruction, before a mismatch hit generates
a debug event.

gdbserver has access to a number of hardware breakpoint and watchpoint
register capabilities, located in well known slots of its capability space. Imme-
diately after a debugging session is initiated, one of the BRPs is linked to the
new dispatcher, thereby configuring it for linked context ID match. All further
breakpoint manipulations will always refer to this linked BRP. This effectively
restricts matches to the address space of the dispatcher being debugged. The
same mechanism also applies for watchpoint registers. All remaining BRPs are
configured in response to GDB set breakpoint packets.

3.3.5 Software Breakpoints

As the name indicates, software breakpoints do not need special hardware sup-
port. Instead they work by temporarily replacing parts of the executable code.
The instruction at the desired breakpoint location is first stored to a safe scratch
space and then replaced by a special unconditional breakpoint instruction. To
remove an existing breakpoint, the swapping process is reversed i.e. the origi-
nal instruction is restored. Care must be taken not to allow multiple software
breakpoints at the same location. Otherwise, depending on the order in which
the breakpoints are removed, the correctly restored original instruction might
subsequently be overwritten again.

On ARM, with its fixed sized instruction set architecture (ISA), run time
code modification is straight forward. Exactly one machine word is swapped
out for a BKPT instruction. For architectures featuring variable length instruc-
tion encodings, the breakpoint instruction has typically the shortest possible
representation and any remaining space can be filled with NOP instructions.

The actual run time code modifications are performed using the regular
memory read/write primitives as described in section 3.3.2.

3.3.6 Debug Event Notification

After domain creation gdbserver invokes the attach debugger capability in-
vocation to register a local LMP endpoint on which the CPU driver can deliver
any debug events associated with the newly created dispatcher.

We now illustrate the steps leading to such a breakpoint event and how it is
subsequently handled:

1. The host GDB sends a continue (c) packet.

2. The reception of the packet is acknowledged by sending +.

3. The dispatcher is resumed and runs until it hits a breakpoint.

4. The CPU driver removes the dispatcher from the run queue and delivers
an LMP message to notify the debugger.

5. The gdbserver receives the LMP message and sends a stop reply packet
to the host debugger to signal that the process has halted.
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3.3.7 Serial Communication

As illustrated in figure 3.1, gdbserver does not directly talk to the UART
device, but instead uses the Flounder based RPC interface to connect to the
user level serial driver. Upon startup it registers itself as a new input consumer,
such that all incoming data is rerouted to it.

The actual GDB protocol implementation is written in a I/O agnostic way.
Swapping out the underlying transport mechanism, used to carry the GDB
packet stream, should be possible with reasonable effort.

3.3.8 RPC Interface and Fish Integration

Analogous to the spawn domain remote procedure call (RPC) provided by spawnd,
gdbserver exposes a Flounder interface to launch and debug new domains:

interface gdbserver "Interface to debug domains" {

rpc debug_domain(in string path ,

in char argvbuf[argvbytes],

in char envbuf[envbytes],

in uint8 flags ,

out errval err);

};

Listing 3.5: Exported Flounder interface of gdbserver.

The blocking debug domain RPC, creates a new domain running the spec-
ified application with the supplied arguments and environment settings. It
instructs the debug service to take over control of the serial port for commu-
nication purposes with a host GDB process. The RPC invocation will block
during the complete debugging session. A reply is only sent once either GDB
detaches or the domain terminates.

The command shell fish was extended to feature a new built in command

$ gdbserver application [arguments]

which initiates a new debugging session.

3.4 Serial I/O Demultiplexing

In order to enable stable remote debugging, a reliable communication channel
to the host system is needed. Due to its simplicity, we chose the serial line as
communication medium for our proof of concept.

Unfortunately the Pandaboard does by default only expose one of its UART
lines through an external connector. Hence regular system I/O and the GDB
remote serial protocol are transmitted over the same physical channel, requiring
some form of software demultiplexing on the host system.

As illustrated in section 2.1.9, all application code interfaces with the serial
line through a dedicated user space serial driver, while the kernel interferes
directly with the hardware when printing diagnostic messages. The debugging
service - like any user space task - can be preempted at any time. As a result
GDB packets and kernel messages can be arbitrarily interleaved.

The GDB remote serial protocol (see section 2.4.1) uses special characters $
and # for packet framing. The data payload is followed by a simple single byte
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checksum. Tools like kdmx1 exploit this structure to distinguish GDB packets
from unrelated output. It serves as a proxy for the host gdb by demultiplex-
ing both data streams and making them available as two separate pseudo tty
devices. This works reasonably well, as long as the two data sources only alter-
nate. But once they interleave, the concept breaks down. At least in theory,
GDB packets will be retransmitted until they eventually arrive uncorrupted.
However, regular system output is discarded. To work around this issue the raw
kernel output routine was modified to delimit the printed message with special
marker sequences. kdmx was adapted accordingly to properly handle interleaved
messages.

Unfortunately the resulting communication channel was not as reliable as
expected. Therefore we decided to perform some slight hardware modifications
to hook up another UART port of the Pandaboard to an external interface.
While it would have been convenient to use a stock Pandaboard without any
hardware changes, in the end a separate communication channel dedicated to
debugging proved to be a simpler solution. Not only does it minimize the re-
quired changes to existing system components, it also enforces a clean separation
between regular system I/O and debugging related communication messages.

On the software side we run a new instance of the user space serial driver
/usr/serial to manage the additional UART port. It exposes exactly the same
Flounder interface as its counterpart controlling the serial port used for regular
system I/O. The only difference is, that it is published to the name server under
a different name (serial debug0). The user mode debugging service then binds
to this instance for communication purposes with the host debugger.

1http://elinux.org/Kdmx
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Chapter 4

Evaluation and Future
Work

In this chapter we are critically reviewing some of the design decision leading
to the current implementation. We discuss limitations of our approach and
mention ideas for further work.

One of the most severe limitation of the presented debugging subsystem is,
that it is currently not possible to debug an already running user domain. At
the moment it is only possible to initiate a completely new debugging session
by spawning a new domain. This is unfortunate, because often a problem is
complex to reproduce and therefore inspecting a still running process would be
beneficial.

More generally, process management in Barrelfish is still rather primitive.
The fact that gdbserver bypasses spawnd for domain creation is a serious lay-
ering violation. Having different code paths for domain creation, depending on
whether a domain is being debugged, seems dangerous. At best, it is just unnec-
essary code duplication, at worst, it is a source of slight differences in run-time
behavior. Ideally, all process management tasks would be centrally managed by
spawnd. This should include functionality to initiate a new debugging session,
either by spawning a new domain or by attaching to an already existing one.
Towards this goal, the Flounder interface served by spawnd should be extended
to provide a way to get hold of the dispatcher and root page table capabilities
needed for debugging purposes. Such a design would also allow spawnd to en-
force a security policy, determining which process is able to debug another one.
Because attaching to existing domains is currently not supported, this aspect
was so far deliberately neglected by our work.

Debugging of multithreaded applications is another area where future work
is needed. Currently the debugging framework has a dispatcher-centric view-
point. It is only possible to access register values of the most recently preempted
user level thread. Per-thread breakpoints are not supported, dispatchers are
the kernels scheduler entity. We employ an all-stop mode, GDB’s non-stop
multi-threaded debugging[22] is not supported. These limitations arise from
Barrelfish’s current threading architecture. The CPU driver shares only parts
of the dispatcher structure with the user level threading library, but is unaware
of the purely user space based thread control blocks. While this design enables
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a great deal of flexibility for the user level threading library, it also rules out
any CPU driver based thread manipulations. A much closer coupling between
the debugging service and libbarrelfish of the process being debugged would
be needed to support full featured multi-threaded debugging.

The Barrelfish architecture encourages to limit CPU driver functionality to
the absolute minimum. With this goal in mind, it would have been possible
to manually translate a virtual address (of the process being debugged) to its
physical counterpart by replicating the page table traversal logic in software.
However the kernel already maintains the necessary information, not taking
advantage of that would needlessly complicate the implementation. Adding
new kernel code, in form of the resolve capability invocation, seems warranted
in this case.

Efficiency has so far not been a main concern of our work. We chose sim-
ple solutions even though they incur slight performance penalties. A concrete
example of this approach are the new capability invocations to read/write core
register values as introduced in section 3.3.3. They currently operate on a sin-
gle register at a time. As a consequence, inspecting the complete set of core
registers requires numerous user/kernel space transitions.

Similarly, access to the virtual address space of the process being debugged
(see section 3.3.2) could be made more efficient. Instead of constantly mapping
and unmapping frame capabilities, gdbserver could employ a caching layer. The
idea being, that the most commonly used memory regions remain available in
the address space of the debugger.

Finally, we draw some high-level comparisons between the presented Bar-
relfish debugging interface and the ptrace(2)1 process tracing system call, com-
monly found on more traditional Unix-like operating systems.

The different design philosophies with regard to core operating system ar-
chitecture are reflected in these interfaces. Barrelfish chooses to only implement
the absolutely necessary privileged mechanisms in the small CPU driver. Ad-
ditional functionality, built on top of these basic building blocks, is as much
as possible pushed into regular user space services. As a concrete example, we
provide capability invocations to configure hardware breakpoints, but leave the
implementation of single instruction stepping to a user level debugging service.
Linux, as an example of a monolithic system, provides an in-kernel implementa-
tion of the same functionality (PTRACE SINGLESTEP). A similar tendency can be
observed in the way access to the virtual address space is granted. The ptrace
API provides explicit ways to read/write machine word sized memory regions.
Barrelfish’s CPU driver on the other hand only provides a way to retrieve a
matching frame capability. Actual access to the memory region is delegated to
the user level debugging service.

Another distinction stems from the capability based resource management of
Barrelfish. Capabilities can easily be copied and propagated. At least in theory,
any domain with access to a dispatcher capability is able to inspect its running
state. This is in contrast to the ptrace API, where process tracing is restricted
to one process at a time. This limitation arises, because tracing temporarily
changes the Unix process hierarchy: the tracer becomes the new parent process
of the tracee. In Unix this is necessary because waitpid(2) is used to signal
process changes back to the debugger.

1http://man7.org/linux/man-pages/man2/ptrace.2.html
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Chapter 5

Conclusion

The presented debugging interface for Barrelfish enables developers to debug
their application code using the GNU debugger (GDB) running on a host oper-
ating system.

Barrelfish’s capability system was extended to cover debugging needs. New
capability types have been introduced to model available hardware debug re-
sources, such as breakpoint and watchpoint registers. The CPU driver was
modified to handle hardware debug exceptions. Furthermore, it provides new
mechanisms to control dispatcher state, inspect memory regions and register
contents. A user space debugging service implements the GDB remote serial
protocol, coordinates communication with GDB and uses the new capability
invocations to implement the necessary low level debug functionality.

While the current design introduces abstractions to enable a basic debugging
environment, more advanced features, such as control of user level threads, will
require future work. Similarly, extending the debugging interface to support
domains spanning core boundaries, poses a number of interesting challenges.
To provide a more comprehensive debugging experience, closer integration with
core system components will be required.
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